On the key exchange via cubical polynomials

Aneta Wróblewska, Vasyl Ustimenko

University of Maria Curie-Skłodowska in Lublin, Poland

11 June 2010
Let F_p, where p is prime, be a finite field. Affine transformations $x \rightarrow Ax + b$, where A is invertible matrix and $b \in F_p^n$, form an affine group $AGL_n(F_p)$ acting on F_p^n. It is known that polynomial transformation of kind

$$x_1 \rightarrow g_1(x_1, \ldots, x_n), x_2 \rightarrow g_2(x_1, \ldots, x_n), \ldots, x_n \rightarrow g_n(x_1, \ldots, x_n)$$

form a symmetric group S_{p^n}.
In the simplest case F_p, affine transformations form an affine group $AGL_n(F_p)$ of order $p^n(p^n - 1)(p^n - p)\ldots(p^n - p^{n-1})$ in the symmetric group S_{p^n} of order $(p^n)!$. In [4] the maximality of $AGL_n(F_p)$ in S_{p^n} was proven. So we can present each permutation π as a composition of several ”seed” maps of kind $\tau_1 g \tau_2$, where $\tau_1, \tau_2 \in AGL_n(F_p)$ and g is a fixed map of degree ≥ 2.
We can choose the base of F_p^n and write each permutation $g \in S_p^n$ as a public rule:

$$x_1 \rightarrow g_1(x_1, x_2, \ldots, x_n)$$

$$x_2 \rightarrow g_2(x_1, x_2, \ldots, x_n)$$

$$\ldots$$

$$x_n \rightarrow g_n(x_1, x_2, \ldots, x_n)$$
Diffie-Hellman algorithm

Let $g^k \in S_{p^n}$ be the new public rule obtained via iteration of g. We consider Diffie-Hellman algorithm for S_{p^n} for the key exchange. Correspondents Alice and Bob establish $g \in S_{p^n}$ via open communication channel, they choose positive integers n_A and n_B, respectively. They exchange public rules $h_A = g^{n_A}$ and $h_B = g^{n_B}$ via open channel. Finally, Alice and Bob compute common vector as $h_B^{n_A}$ and $h_A^{n_B}$, respectively.
This scheme of "symbolic Diffie-Hellman algorithm" can be secure, if:

- the order of g is "sufficiently large" (if not we have an algorithm for the cyclic group),
- adversary can not compute number n_A (or n_B) as functions from degrees for g and g^{n_A}.
Algebraic definition of the simple graph

To construct g_n we will use bipartite graph with the point set $P = F_p^n$ and line set $L = F_p^n$. Incidency of points and lines will be defined via system of algebraic equations.
Algebraic definition of the simple graph

P and L are two n-dimensional free modules of K ($K = F_p$ for the beginning), where K is a commutative ring with unity.

P - points

L - lines.

If $x \in V$, then $(x) \in P$ and $[x] \in L$.

\[(p) = (p_1, p_{1,1}, p_{1,2}, p_{2,1}, p_{2,2}, p'_{2,2}, p_{2,3}, p_{3,2}, p_{3,3}, p'_{3,3}, \ldots)\]

\[[l] = [l_1, l_{1,1}, l_{1,2}, l_{2,1}, l_{2,2}, l'_{2,2}, l_{2,3}, l_{3,2}, l_{3,3}, l'_{3,3}, \ldots]\]
Incidence structure \((P, L, I)\)

Point \((p)\) is incident with the line \([l]\), and we write \((p)l[l]\), if the following relations between their coordinates hold:

\[
\begin{align*}
 l_{1,1} - p_{1,1} &= l_1 p_1 \\
 l_{1,2} - p_{1,2} &= l_1 p_1 \\
 l_{2,1} - p_{2,1} &= l_1 p_{1,1} \\
 l_i,i - p_{i,i} &= l_1 p_{i-1,i} \\
 l_i',i - p_{i,i}' &= l_{i-1} p_1 \\
 l_{i,i+1} - p_{i,i+1} &= l_{i,i} p_1 \\
 l_{i+1,i} - p_{i+1,i} &= l_1 p_{i,i}'.
\end{align*}
\]
Rainbow like colouring

We will use a special colouring of edges. We can think that simple graph is a directed graph such that $a \rightarrow b$ and $b \rightarrow a$.

Let $E(\Gamma)$ be the set of arrows of k-regular graph Γ, M - set of colours and function $\pi : E \rightarrow M$ such that for each vertex $v \in V$ and $\alpha \in M$ there exist unique neighbor $u \in V$ with property $\pi((v, u)) = \alpha$.
We say that such colouring is rainbow like, if the operator $N_a(v) := N(a, v)$ taking the neighbor u of a vertex v with arrow of colour α is bijection.

For our graph $D(k, F_p)$ the set of colours is F_p. If we have $(p) \rightarrow [l]$, where

$$(p) = (p_1, p_{1,1}, p_{1,2}, p_{2,1}, p_{2,2}, p'_{2,2}, p_{2,3}, p_{3,2}, p_{3,3}, p'_{3,3}, \ldots)$$

$[l] = [l_1, l_{1,1}, l_{1,2}, l_{2,1}, l_{2,2}, l'_{2,2}, l_{2,3}, l_{3,2}, l_{3,3}, l'_{3,3}, \ldots]$, the colour is $l_1 - p_1$.
Let $g = g_n = N_{\alpha_1} N_{\alpha_2} \ldots N_{\alpha_{2s}}$ where $2s$ is even constant, then $g : P \to P$, $g \in S_{p^n}$.

$\alpha_1 \alpha_2 \ldots \alpha_{2s}$ must be irreducible, i.e. $\alpha_i \neq -\alpha_{i+1}$ for $i = 1, 2, \ldots, 2s - 1$.

$g = g_n$ corresponds to the pass of length $2s$ within the graph.
To prove that order $|g_n| \to \infty$ with $n \to \infty$ we can use the concept of the family of large girth.

The **girth** of the simple graph is the length of its smallest cycle. The infinite sequence G_i of k-regular simple graphs of increasing order v_i and girth d_i is a **family of graphs of large girth** if $d_i \geq c \log_{k-1}(v_i)$, where c is independent positive constant. It can be shown that $d(D(n, F_p)) \geq n + 5$, and for $p \geq 5$ we have $d(D(n, F_p)) = n + 5$.

Aneta Wróblewska, Vasyl Ustimenko

On the key exchange via cubical polynomials
Now g^k corresponds to pass

$$(\alpha_1 \alpha_2 \ldots \alpha_{2s})(\alpha_1 \alpha_2 \ldots \alpha_{2s}) \ldots (\alpha_1 \alpha_2 \ldots \alpha_{2s})$$

of length $2sk$, with condition $\alpha_1 \neq -\alpha_{2s}$.

If $g^k = 1$ we have a cycle. So we must have

$$|g| \geq \frac{d(D(n,F_p))}{2s} = \frac{n+5}{2s}.$$

The fact that for each k, g^k is cubic was proven in [8] with usage of induction.

Group generated by all g, corresponding to even sequence of colours, will be extraspecial subgroups for S_{pn} with $c = 3$.
Generalization for arbitrary finite commutative ring K

We generalize the above algorithm for the case of arbitrary finite commutative ring K with at least 3 regular elements (non zero devisors). We have to change F_p^i for free module K^i and the family of the above mentioned simple graphs for the family of regular directed graphs with vertex set $K^i \cup K^i$ of large girth and symmetric group S_{p^i} and $AGL_i(F_p)$ for Cremona group $C(K^i)$ of all polynomial automorphisms of K^i and group of affine automorphisms of $AGL_i(K)$, respectively.
Regular directed graph

Directed graph - an irreflexive binary relation $\phi \subset V \times V$, where V is the set of vertices.

Let introduce two sets

$$id(v) = \{x \in V | (a, x) \in \phi\},$$

$$od(v) = \{x \in V | (x, a) \in \phi\}$$

as sets of inputs and outputs of vertex v. Regularity means the cardinality of these two sets (input or output degree) are the same for each vertex.
Construction of new graph - double directed graph

In the first step we connect point with line to get two sets of vertices of new graph:

\[F = \{ \langle (p), [l] \rangle \mid (p)I[l] \} \cong K^{n+1} \]

\[F' = \{ \{ [l], (p) \} \mid [l]I(p) \} \cong K^{n+1}. \]

Now we define the following relation between vertices of the new graph:

\[\langle (p), [l] \rangle R \{ [l'], (p') \} \iff [l] = [l'] \land p_1 - p_1' \in \text{Reg}K \]

\[\{ [l'], (p') \} R \langle (p), [l] \rangle \iff (p') = (p) \land l_1' - l_1 \in \text{Reg}K. \]

Our key will be \(\alpha_1, \alpha_2, \ldots, \alpha_n \), such that \(\alpha_i \in \text{Reg}K \).
As a first vertex we take

$$\{[l], (p)\} = (l_1, l_1, l_1, 2, \ldots, l_{i,j}, p_1)$$

(our variables). Using the above relation we get next vertex:

$$\langle (p)^{(1)}, [l]^{(2)} \rangle = (p_1, p_1^{(1)}, \ldots, p_1^{(1)}, l_1 + \alpha_1)$$

with coefficients of degree 2 or 3.

Similarly we get third vertex:

$$\{[l]^{(2)}, (p)^{(3)}\} = (l_1 + \alpha_1, l_1, 1, 2, \ldots, l_{i,j}, p_1 + \alpha_2)$$

also with coefficients of degree 2 or 3.
Hence using the induction we got:

\[
\deg_{p_{i,j}}^{(2k+1)} = \begin{cases}
2, & (i,j) = (i,i)' \text{ or } (i,j) = (i, i+1), \\
3, & (i,j) = (i, i) \text{ or } (i,j) = (i + 1, i)
\end{cases}
\]

\[
\deg_{l_{i,j}}^{(2k+2)} = \begin{cases}
3, & (i,j) = (i,i)' \text{ or } (i,j) = (i, i+1), \\
2, & (i,j) = (i, i) \text{ or } (i,j) = (i + 1, i)
\end{cases}
\]

Hence we got extraspecial group, defined by algebraic graph acting on K^{n+1}, with $c = 3$.

Aneta Wróblewska, Vasyl Ustimenko

On the key exchange via cubical polynomials
Construction of new graph - triple directed graph

Now we connect three vertices of the graph to get two sets of vertices of new graph:

$$ F = \{ \langle (p^1), [l], (p^2) \rangle \mid (p^1)l[l]l(p^2) \} \cong K^{n+2} $$

$$ F' = \{ \{[l^1], (p), [l^2] \} \mid [l^1]l(p)l[l^2] \} \cong K^{n+2}. $$

Now we define the relation between vertices of the new graph:

$$ \langle (p^1), [l], (p^2) \rangle R \{[l'^1], (p'), [l'^2] \} \iff $$

$$ \iff [l] = [l'^1] \& (p^2) = (p') \& l'^1_1 - l'^2_1 \in \text{Reg}K $$

$$ \{[l^1], (p), [l^2] \} R \langle (p'^1), [l'], (p'^2) \rangle \iff $$

$$ \iff (p) = (p'^1) \& [l^2] = [l'] \& p'^1_1 - p'^2_1 \in \text{Reg}K $$
We are starting from the vertex:

$$\{[l], (p), [l^1]\} = (l_1, l_{1,1}, l_{1,2}, \ldots, l_{i,j}, p_1, l_{1^2}^2)$$

Similarly as in the previous section (by the induction) in (2k) and (2k+1) vertex we get vertices with corresponding degrees:

$$\langle (p^{2k-2}), [l^{2k-1}], (p^{2k}) \rangle = (p_1 + \alpha_1 + \ldots + \alpha_{(2k-3)}, p_{1,1}, \ldots, p_{i,j},$$

$$l_{1^2}^2 + \alpha_2 + \ldots + \alpha_{(2k-2)}, p_1 + \alpha_1 + \ldots + \alpha_{(2k-1)}),$$

$$\{[l^{2k-1}], (p^{2k}), [l^{2k+1}]\} = (l_{1^2}^2 + \alpha_2 + \ldots + \alpha_{(2k-2)}, l_{1,1}, \ldots, l_{i,j},$$

$$p_1 + \alpha_1 + \ldots + \alpha_{(2k-1)}, l_{1^2}^2 + \alpha_2 + \ldots + \alpha_{(2k)})$$
where

$$\deg p_{i,j}^{(2k)} = \begin{cases}
3, & (i,j) = (i,i)' \text{ or } (i,j) = (i, i+1), \\
4, & (i,j) = (i,i) \text{ or } (i,j) = (i+1,i)
\end{cases}$$

and

$$\deg l_{i,j}^{(2k+1)} = \begin{cases}
4, & (i,j) = (i,i)' \text{ or } (i,j) = (i, i+1), \\
3, & (i,j) = (i,i) \text{ or } (i,j) = (i+1,i)
\end{cases}$$

Hence we got extraspecial group on K^{n+2}, with $c = 4$
Construction of new graph - directed quadro graph

Different situation is when we connect four vertices to obtain a new graph.
Let define two sets of vertices:

\[F = \left\{ \langle (p^1), [l^1], (p^2), [l^2] \rangle \mid (p^1)I[l^1]I(p^2)I[l^2] \right\} \cong K^{n+3} \]

\[F' = \left\{ \{[l^1], (p^1), [l^2], (p^2)\} \mid [l^1]I(p^1)I[l^2]I(p^2) \right\} \cong K^{n+3}, \]
and relation between them:

\[\langle (p^1), [l^1], (p^2), [l^2] \rangle \, R \, \{ [[l']^1], ((p')^1), [[l']^2], ((p')^2) \} \quad \iff \quad [l^1] = [[l']^1] \, \land \, (p^2) = ((p')^1) \, \land \, [l^2] = [[l']^2] \, \land \, p_1^1 - (p')_1^2 \in \text{Reg}_K \,
\]

\[\{ [l^1], (p^1), [l^2], (p^2) \} \, R \, \langle ((p')^1), [[l']^1], ((p')^2), [[l']^2] \rangle \quad \iff \quad (p^1) = ((p')^1) \, \land \, [l^2] = [[l']^1] \, \land \, (p^2) = ((p')^2) \, \land \, l^1 - (l')^2 \in \text{Reg}_K \]
We could start from the vertex:

\[\{[l^1], (p^1), [l^2], (p^2)\} = (l_1^1, l_{1,1}, l_{1,2}, \ldots, l_{i,j}, p_1^1, l_1^2, p_1^2) \]

After the first step we get vertex:

\[\langle (p^1), [l^2], (p^2), [l^1 + \alpha_1]\rangle = (p_1^1, p_{1,1}, \ldots, p_{i,j}, l_1^2, p_1^2, l_1^1 + \alpha_1), \]

with degrees 2 or 3.
By the similar calculation we get:

► the third vertex (second step):

\[\{[l^2], (p^2), [l^1 + \alpha_1], (p^1 + \alpha_2)\} = \]
\[= (l^2_1, l_{1,1}, l_{1,2}, \ldots, l_{i,j}, p^2_1, l^1_1 + \alpha_1, p^1_1 + \alpha_2), \]

with degrees 3 or 4.

► the fourth vertex (third step):

\[\langle(p^2), [l^1 + \alpha_1], (p^1 + \alpha_2), [l^2 + \alpha_3]\rangle = \]
\[= (p^2_1, p_{1,1}, \ldots, p_{i,j}, l^1_1 + \alpha_1, p^1_1 + \alpha_2, l^2_1 + \alpha_3), \]

with degrees 4 or 5.
the fifth vertex (fourth step):

\[\{[l^1 + \alpha_1], (p^1 + \alpha_2), [l^2 + \alpha_3], (p^2 + \alpha_4) \} = \]
\[= (l^1_1 + \alpha_1, l^1_1, l^1_1, \ldots, l^1_i, p^1_1 + \alpha_2, l^1_1 + \alpha_3, p^2_1 + \alpha_4) \]

with degrees 5 or 6, and so on.

This gives an information that degrees of the polynomials grows along with the growth of the length of the password - after \(k \) steps we get polynomials of degree \(k - 1 \) or \(k \).
Conclusion

Group G_n, generated by transformation of kind $N_{\alpha_1} \times N_{\alpha_2}$, where $\alpha_1 \neq \alpha_2$, is an extraspecial with constant $c = 3, 4$. Non trivial elements of this groups are polynomials of degree 3 (or 4 in case of triple).

The security of our key exchange based on G_n depends on the complexity of discrete logarithm problem for G_n. We hope investigate the properties of this group.

From the properties of the graph we got, that for $g = g(n) = N_{\alpha_1} N_{\alpha_2} \ldots N_{\alpha_{2s}}$ we have $\lim_{n \to \infty} |g(n)| = \infty$
Transformation $\tau_1 G_n \tau_2$, where $\tau_1, \tau_2 \in AGL_n(K)$ can be used as public rules. We have a similarity with known Imai-Matsumoto algorithm, for which J. Patarin found a cryptoanalytical solution. We hope that encryption $\tau_1 G_n \tau_2$ can be interesting problem for cryptoanalysis.
Bibliography

Thank you for your attention!