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Pseudorandomness

Definition
A sequence can be considered as a pseudorandom sequence, if it cannot be
distinguish from random sequences.

I If the sequence is infinite, then we can test it by complexity theory, etc.

I If the sequence is finite, we can only study its statistical properties
I well-distribution relative to arithmetic progression
I normality
I auto-correlation

Maudit and Sárközy introduced several measures of pseudorandomness
focusing on this properties.

If we want to consider a sequence as pseudorandom, then it must be
indistinguishable from random sequences with respect to these measures.
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Measures of pseudorandomness

Let EN = (e1, . . . ,eN) ∈ {−1,+1}N be a finite binary sequence. Then

Definition (Mauduit, Sárközy)

The well-distribution measure of EN :

W (EN) = max
a,b,t

∣∣∣∣∣∣
t−1∑
j=1

ea+jb

∣∣∣∣∣∣ ,
where a,b, t ∈ N, a + (t − 1)b ≤ N.

The correlation measure of order ` of EN :

C`(EN) = max
M,D

∣∣∣∣∣∣
M∑

j=1

en+d1en+d2 . . . en+d`

∣∣∣∣∣∣ ,
D = (d1,d2, . . . ,d`), M ∈ N, M + d` ≤ N.



Measures of pseudorandomness

Theorem (Alon, Kohayakava, Mauduit, Moreira, Rödl)
If EN is a truly random sequence, then we have

1
δ

√
N < W (EN) < δ

√
N

and

2
5

√√√√N log

(
N
`

)
< C`(EN) <

7
4

√√√√N log

(
N
`

)
.

with probability at least 1− ε.

Definition
The EN sequence is considered as a pseudorandom sequence if

W (EN)� N1/2 log Nc ill. C`(EN)� `N1/2 log Nc′ .
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Earlier construction over Fp

Several construction have been tested in terms of these
measures earlier:

I Goubin, Mauduit, Sárközy : Legendre symbol sequence:

en =

(
f (n)

p

)

I Rivat, Mauduit, Sárközy : Residue of a polynomial:

en = +1 ⇔ f (n) ∈ {0, 1, 2, . . . , p − 1
2
}

I Gyarmati : Construction based on the discrete logarithm:

en = +1 ⇔ log f (n) ∈ {0, 1, 2, . . . , p − 1
2
}

I Gyarmati, Pethő, Sárközy : A transform of sequences generating by
linear recursion:

xn ≡ c1xn−1 + c2xn−2 + · · ·+ chxn−h (mod p)

en =

(
xn

p

)
Here f ∈ Fp[x ],

(
·
p

)
is the Legendre symbol modulo p.
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Elliptic curves

E(Fp) = {(x , y) : y2 = x3 + Ax + B}, A,B ∈ Fp.

I (E(Fp),+) is an Abelian group.
I The neutral element of E is O.
I The number of points in E(Fp) satisfies:

|p + 1− |E(Fp)|| ≤ 2
√

q.

I The set of rational function f (P)(= f (x , y)) on E is

Fp(E) = Fp(x , y)/(y2 = x3 + Ax + B).

I We will use the notation: P = (x(P), y(P)).
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Sequences generated from Elliptic Curves

Let G be a generator of E(Fp) (or at least an element with large
order). Then

n 7−→ x(nG) ∈ Fp,

or in general
n 7−→ f (nG) ∈ Fp,

where f ∈ Fp(E).
In order to generate binary sequences we have to choose one
of the bits of f (nG):

Chen: n 7→
(

f (nG)
p

)
Liu, Zhan, Wang: n 7→

{
+1 if f (nG) ∈ {0,1,2 . . . , p−1

2 }
−1 otherwise

Here
(
·
p

)
is the Legendre symbol modulo p.
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Sequences generated from Elliptic Curves, example

Let E : y2 = x3 − 2x over F19

|E| = 20, G = (2, 2) is a generator.

Let f (x , y) = x .

en =

(
x(nG)

19

)

n nG en

1 (2,2) -1
2 (7,14) +1
3 (15,1) -1
4 (11,6) +1
5 (13,10) -1
6 (5 ,1 ) +1
7 (10 ,7 ) -1
8 (16 ,13 ) +1
9 (18 ,18 ) -1

10 (0 ,0) +1

n nG en

11 (18 ,1 ) -1
12 (16 ,6 ) +1
13 (10,12) -1
14 (5,18) +1
15 (13,9) -1
16 (11,13) +1
17 (15,18) -1
18 (7,5) +1
19 (2,17) -1
20 O +1
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Sequences generated from Elliptic Curves, example

Let E : y2 = x3 − 2x over F19

|E| = 20, G = (2, 2) is a generator.
Let f (x , y) = x .

en =

(
x(nG)

19

)

Why E20 is not pseudorandom?

Let nG = (x , y), then

en · en+10 =

( f (nG)

19

)
·
( f ((n + 10)G)

19

)
=

( f (nG) · f (nG + 10G)

19

)

=

( f (nG) · f (nG + (0, 0))

19

)
=

 x ·
((

y
x

)2
− x

)
19

 = 1,

since

x ·
((y

x

)2
− x

)
≡ −2 mod y2 = x3 − 2x over F19

is a constant function!
Thus the original sequence

n 7−→ x(nG) ∈ Fp,

is also not pseudorandom.
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Sequences generated from Elliptic Curves,
admissibility

In general: the C`(ET ) is small, if the function

F (P) = f (P + d1G) . . . f (P + d`G) ∈ Fp(E)

is not a square.

Definition
(k , `,m) is a d-admissible triple, if there are no multisets A,B ⊂ Zm such that

I |A| = k, |B| = `

I the number of solution of a + b = c, a ∈ A, b ∈ B is divisible by d.

Let k = | Supp(f )|, m = p, d = 2. If the triple (Supp(f ), `, p) is 2-admissible,
then the function F is not a square.
If

I A : the multiset of the zeros and poles of f ;
I B = {d1G, . . . , d`G};
I F is a square,

then a + b = c has even number of solution for each c.
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Sequences generated from Elliptic Curves, general
construction

Construction (Chen)
Let G be a generator of E(Fp), and f ∈ Fp(E), and let us define ET = (e1, . . . , eT ) by

en =

{ (
f (nG)

p

)
ha f (nG) 6= 0,O,

+1 ha f (nG) = 0,O.

Construction (Mérai)
Let G be a generator of E(Fp), and f ∈ Fp(E), χ is a multiplicative character of Fp , and let us define
ET = (e1, . . . , eT ) by

en =

{
+1 if arg

(
χ(f (nG))

)
∈ [0, π)

−1 otherwise.

χ(f (nG))⇒ en = +1

χ(f (mG))⇒ em = −1



Sequences generated from Elliptic Curves, general
construction

Construction (Chen)
Let G be a generator of E(Fp), and f ∈ Fp(E), and let us define ET = (e1, . . . , eT ) by

en =

{ (
f (nG)

p

)
ha f (nG) 6= 0,O,

+1 ha f (nG) = 0,O.

Construction (Mérai)
Let G be a generator of E(Fp), and f ∈ Fp(E), χ is a multiplicative character of Fp , and let us define
ET = (e1, . . . , eT ) by

en =

{
+1 if arg

(
χ(f (nG))

)
∈ [0, π)

−1 otherwise.

χ(f (nG))⇒ en = +1

χ(f (mG))⇒ em = −1



Sequences generated from Elliptic Curves, general
construction

Theorem
If the order of G is T , and the order of χ is d then

W (ET )� | Supp(f )|p1/2(1 + log T ) log d .

If the triple (| Supp(f )|, `,T ) is d-admissible, then

C`(ET )� `10`| Supp(f )|p1/2(1 + log T )(log d)`.

The proof is based on the notion of admissibility and an elliptic curve
analogue of the Weil bound.

Special cases:
I d = 2: Legendre symbol sequence over elliptic curves.
I d = p − 1: Chen, Xiao: Elliptic curve analogue of a construction of

Gyarmati based on the discrete logarithm.
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Admissibility

Theorem
Let p(m) be the smallest prime factor of m. Then

I If k < p(m), then the triple (k ,2,m) is d-admissible.
I If

(4`)k < p(m),

then (k , `,m) is d-admissible.
I If m is a prime, and each prime factor of d is primitive root

modulo m, then (k , `,m) is d-admissible.

Note: It is enough to prove the theorem in the case when d is a
prime number.



Proof of the admissibility I.

If there exist multisets A,B, such that
I |A| = k , |B| = 2;
I for each c if the equation a + b = c has solution, then there

are at least two.
Let B = {r , r + s} (s 6= 0).
Then each elements of A+ r has at least two representations
So

|A| =|{a + r | a ∈ A}| = |{a + r + s | a ∈ A}| =
=|{a + r + st | a ∈ A}| ≥ p(m),

since {a + r + st | a ∈ A} is a not-trivial co-set of Zm, which
contradicts to the condition k < p(m).



Proof of the admissibility III.

Let p = m, d be prime numbers.
For a given multiset C ⊆ Zp let

PC(x) =
∑
c∈C

x rp(c).

(where rm(c) is the least non-negative residue of c modulo p.)

For a given u ∈ Zp we have

Pu+C(x) ≡ xu · PC(x) mod xp − 1 over Zd .

In A+ B each element is represented in d ways if and only if

PA(x) · PB(x) ≡ PA+B(x) = 0 mod xp − 1 over Zd .

So there are no multisets A,B if the polinomial

xp − 1
x − 1

= xp−1 + · · ·+ 1

is irreducible over Zd , i.e. d is primitive root modulo p.



Sequences generated from Elliptic Curves

Let G be a generator of E(Fp) (or at least an element with large
order). Then

n 7−→ x(nG) ∈ Fp,

or in general
n 7−→ f (nG) ∈ Fp,

where f ∈ Fp(E).
In order to generate binary sequences we have to choose one
of the bits of f (nG):

Chen: n 7→
(

f (nG)
p

)
Liu, Zhan, Wang: n 7→

{
+1 if f (nG) ∈ {0,1,2 . . . , p−1

2 }
−1 otherwise

Here
(
·
p

)
is the Legendre symbol modulo p.



An other construction

Construction
Let G be a generator of E(Fp), and f ∈ Fp(E), and let us define
ET = (e1, . . . , eT ) by

en =

{
+1 f (nG) ∈ {0, 1, 2, . . . , p−1

2 }
−1 otherwise.

Liu, Zhan, Wang:
I f is a "polynomial", i.e. the O is the only pole of f ;
I 1/f is a "polynomial", i.e. the O is the only zero of f ;

What can we say, when f is a general function?
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An other construction, an example

Again let E : y2 = x3 − 2x over F19

|E| = 20, G = (2, 2) is a generator.

Let f (x , y) = 9x + 1
x .

en =

{
+1 9x(nG) + 1

x(nG)
∈ {0, 1, 2, . . . , 9}

−1 otherwise.

n nG f (nG) en

1 (2,2) 9 +1
2 (7,14) 17 -1
3 (15,1) 16 -1
4 (11,6) 11 -1
5 (13,10) 6 +1
6 (5 ,1 ) 11 -1
7 (10 ,7 ) 16 -1
8 (16 ,13 ) 17 -1
9 (18 ,18 ) 9 +1
10 (0 ,0) ∞ -1

n nG f (nG) en

11 (18 ,1 ) 9 +1
12 (16 ,6 ) 17 -1
13 (10,12) 16 -1
14 (5,18) 11 -1
15 (13,9) 6 +1
16 (11,13) 11 -1
17 (15,18) 16 -1
18 (7,5) 17 -1
19 (2,17) 9 +1
20 O ∞ -1
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Let f (x , y) = 9x + 1

x .

en =

{
+1 9x(nG) + 1

x(nG)
∈ {0, 1, 2, . . . , 9}

−1 otherwise.

Why this sequence is not random?

The correlation measure C2(E20) is large:
en · en+10 = +1 for n = 1, 2, . . . , 10.

By using additive character sums, it can be shown that the correlation
measure of order ` is small, if none of the functions

F (P) = h1 · f (P + d1G) + · · ·+ h` · f (P + d`G) (h1, . . . , h`) ∈ F`p \ (0, . . . , 0)

are constant.
But

f (P)− f (P + 10G) =

(
9x +

1

x

)
−

9

(( y

x

)2
− x

)
+

1(
y
x

)2
− x


=

(
9x +

1

x

)
−
(

9 ·
−2

x
+
−1

2
x
)

= 0
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An other construction

Construction (Mérai)
Let G be a generator of E(Fp), and f ∈ Fp(E), and let us define
ET = (e1, . . . , eT ) by

en =

{
+1 f (nG) ∈ {0, 1, 2, . . . , p−1

2 }
−1 otherwise.

For general rational functions:

Theorem
If the order of G is T then

W (ET )� | Supp(f )|p1/2 log p log T .

If p(T ) is the least prime divisor of p and
I | Supp(f )| < p(T ) and ` = 2, or
I (4| Supp(f )|)` < p(T ),

then
C`(ET )� `| Supp(f )|p1/2(log p)`+1 log T .
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Extension of constructions to several dimensions

The extension of binary sequences in several dimensions,
called binary lattice:

η : {1,2, . . . ,N}n → {+1,−1}

We can define the analogue of the measures of
pseudorandomness in several dimensions: Q`(η).

Application:
I encryption of several dimensions map or picture via the

analogue of the Vernam cipher.



Constructions of binary lattices

Let q = pn be a prime power, u1, . . . , un ∈ Fq is a basis over Fp. Let f ∈ Fq[x ]

I Huber, Mauduit, Sárközy:

η(x1, . . . , xn) = χ2 (f (x1u1 + · · ·+ xnun)) ,

where χ2 is the quadratic character over Fq .
I Mérai:

η(x1, . . . , xn) = +1, if arg
(
χ
(
f (x1u1 + · · ·+ xnun)

))
∈ [0, π),

where χ is a general multiplicative character.
I Mauduit, Sárközy:

η(x1, . . . , xn) = f−1(x1u1 + · · ·+ xnun) ∈ B,

where x−1 is the multiplicative inverse of x , B ⊂ Fq .
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Construction of binary lattice from elliptic curves

Definition
The points P1, . . . , Pn ∈ E are weakly independents if

λ1P1 + · · · + λnPn = O ⇒ λi Pi = O for each i = 1, . . . , n.

Construction (Mérai)
Let P1, . . . , Pn ∈ E are weakly independent element, let us define η by

η(x1, . . . , xn) =


(

f (x1P1+···+xnPn)

p

)
if x1P1 + · · · + xnPn 6= O

−1 otherwise.

Example

I If E is not cyclic, and P,Q ∈ E are the echelonized generators, then they are weakly independents.

I If P ∈ E, |P| = α1 . . . αn such that the numbers α1 . . . αn are pairwise co-prime, then the elements

P1 =
|P|
α1

P, . . . , Pn =
|P|
αn

P

are weakly independents.
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λ1P1 + · · · + λnPn = O ⇒ λi Pi = O for each i = 1, . . . , n.

Construction (Mérai)
Let P1, . . . , Pn ∈ E are weakly independent element, let us define η by

η(x1, . . . , xn) =


(

f (x1P1+···+xnPn)

p

)
if x1P1 + · · · + xnPn 6= O

−1 otherwise.

Example

I If E is not cyclic, and P,Q ∈ E are the echelonized generators, then they are weakly independents.

I If P ∈ E, |P| = α1 . . . αn such that the numbers α1 . . . αn are pairwise co-prime, then the elements

P1 =
|P|
α1

P, . . . , Pn =
|P|
αn

P

are weakly independents.
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η(x1, . . . , xn) =

{ (
f (x1P1+···+xnPn)

p

)
if x1P1 + · · ·+ xnPn 6= O

−1 otherwise.

Theorem
Let H be the subgroup generated by P1, . . . ,Pn, p(H) is the least prime
divisor of |H|. If

I | Supp(f )| < P(H) and ` = 2; or
I 4n(| Supp(f )|+`) < p(H),

then
Q` �n,`,f p1/2+ε.

I Good constructions can be defined with general multiplicative
characters.

I The proof based on the notion of admissibility over general (not cyclic)
Abelian group and character sum estimates over elliptic curves.
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