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Pseudorandomness

Definition
A sequence can be considered as a pseudorandom sequence, if it cannot be
distinguish from random sequences.

» If the sequence is infinite, then we can test it by complexity theory, etc.

» If the sequence is finite, we can only study its statistical properties

» well-distribution relative to arithmetic progression
» normality
» auto-correlation

Maudit and Sarkézy introduced several measures of pseudorandomness
focusing on this properties.

If we want to consider a sequence as pseudorandom, then it must be
indistinguishable from random sequences with respect to these measures.



Measures of pseudorandomness

Let Ey = (ey,...,en) € {—1,+1}" be a finite binary sequence. Then

Definition (Mauduit, Sarkozy)

The well-distribution measure of Ey :

where a,b,t e N, a+ (t—1)b < N.

The correlation measure of order ¢ of Ey:

M

E en+d1 en+d2 °oo en+d14
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D= (di,cb,...,ds), Me N, M+d, < N.



Measures of pseudorandomness

Theorem (Alon, Kohayakava, Mauduit, Moreira, Rédl)

If En is a truly random sequence, then we have

%\W < W(Ey) < VN

2 N 7 N
5 N|Og<€><Cg(EN)<4 Nlog<€>.

with probability at least1 — ¢.

and



Measures of pseudorandomness

Theorem (Alon, Kohayakava, Mauduit, Moreira, Rédl)

If En is a truly random sequence, then we have

%\W < W(Ey) < VN

2 N 7 N
5 N|Og<€><C[(EN)<4 Nlog<€>.

with probability at least1 — ¢.

and

Definition
The En sequence is considered as a pseudorandom sequence if

W(En) < N'/21og N® ill. Cy(En) < EN'?log N° .
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Earlier construction over I,

Several construction have been tested in terms of these
measures earlier:

» Goubin, Mauduit, Sarkézy: Legendre symbol sequence:

(%)

» Rivat, Mauduit, Sarkézy: Residue of a polynomial:

en=4+1 & f(n)e {0,172,...7%}
» Gyarmati: Construction based on the discrete logarithm:
en=+41 <& logf(n) e {0,1,2,...,%}
» Gyarmati, Peth6, Sarkézy: A transform of sequences generating by
linear recursion:

Xn = C1Xn—1+ C2Xn—2 + -+ + ChXn_n (Mod p)

- (3)

Here f € Fp[x], (;) is the Legendre symbol modulo p.
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> (£(Fp), +) is an Abelian group.
» The neutral element of £ is O.
» The number of points in £(F,) satisfies:

p+1 - E(F)| <2V



Elliptic curves

E(Fp) = {(x,y) : y? = x® + Ax + B},

v

(E(Fp),+) is an Abelian group.
The neutral element of £ is O.
The number of points in £(F,) satisfies:

lp+1—[E(Fp)ll <2va.

vy

A, B e Fp.

v

v

The set of rational function f(P)(= f(x,y)) on £ is
Fo(€) = Fp(X,¥)/(y* = x° + Ax + B).
We will use the notation: P = (x(P), y(P)).
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Sequences generated from Elliptic Curves

Let G be a generator of £(Fp) (or at least an element with large
order). Then
n+— x(nG) € Fp,

or in general
n+— f(nG) € Fp,

where f € Fp(E).
In order to generate binary sequences we have to choose one
of the bits of f(nG):

f(nG)

Chen: n —

p
+1 if f(nG) € {0,1,2..., 2.1}

Liu, Zhan, Wang: n {_1 otherwise

Here <;) is the Legendre symbol modulo p.
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Sequences generated from Elliptic Curves, example

Let &:y2?=x®—2xoverFyg
|€] =20, G = (2,2) is a generator.
Let f(x,y) = x.

n nG en n nG én
1 (2,2) -1 11 | (18,1)
2 | (7,14) 12 | (16,6)
3 (15,1) 13 | (10,12)
4 (11,6) 14 | (5,18)
5 (13,10) 15 | (13,9)
6 (5,1) 16 | (11,13)
7 (10,7) 17 | (15,18)
8 | (16,13) 18 (7,5)
9 | (18,18) 19 | (2,17)
10 (0,0) 20 (@]




Sequences generated from Elliptic Curves, example

Let &:y2?=x®—2xoverFyg
|€] =20, G = (2,2) is a generator.
Let f(x,y) = x.

e — (x(1ngG))

n nG en n nG én
1 (2,2) -1 11 | (18,1)
2 | (7,14) | + 12 | (16,6)
3 (15,1) 13 | (10,12)
4 (11,6) 14 | (5,18)
5 (13,10) 15 | (13,9)
6 (5,1) 16 | (11,13)
7 (10,7) 17 | (15,18)
8 | (16,13) 18 (7,5)
9 | (18,18) 19 | (2,17)
10 (0,0) 20 (@]




Sequences generated from Elliptic Curves, example

Let &:y2?=x®—2xoverFyg
|€] =20, G = (2,2) is a generator.

Let f(x,y) = x.
x(nG)
o= ( 19 )

n nG én n nG en
1 2,2) X 11| (18,1)
2 (7,14) +1 12 | (16,6)
3 (15,1) -1 13 | (10,12)
4 (11,6) 14 | (5,18)
5 | (13,10) 15 | (13,9)
6 (5,1) 16 | (11,13)
7 | (10,7) 17 | (15,18)
8 | (16,13) 18 | (7,5)
9 | (18,18) 19 | (2,17)
10 | (0,0) 20 o




Sequences generated from Elliptic Curves, example

Let &:y2?=x®—2xoverFyg
|€] =20, G = (2,2) is a generator.
Let f(x,y) = x.

n nG en n nG én
1 (2,2) -1 11| (18,1) | -1
2 | (7,14) | + 12 | (16,6) | +1
3 (15,1) -1 13 | (10,12) | -1
4 (11,6) +1 14 | (5,18) | +1
5 (13,10) -1 15 | (13,9) -1
6 (5,1) +1 16 | (11,13) | +1
7 (10,7) -1 17 | (15,18) | -1
8 | (16,13) | +1 18 (7,5) +1
9 | (18,18) | -1 19 | (2,17) -1
10 (0,0) +1 20 (@] +1




Sequences generated from Elliptic Curves, example

Let &:y?=x®—2xoverFyg
€] =20, G = (2,2) is a generator.

Let f(x,y) = x.
- (42)

Why Eyg is not pseudorandom?




Sequences generated from Elliptic Curves, example

Let &:y?=x®—2xoverFyg
€] =20, G = (2,2) is a generator.

Let f(x,y) = x.
- (42)

Why Eyg is not pseudorandom?
Let nG = (x, y), then

f(nG)) ' (f((n +1910)G)> _ (f(nG) : f(1ngG+1OG))

_ (fre- e 0,00 _ (*‘((i):”)) 1,

€n - eni10 = (

19



Sequences generated from Elliptic Curves, example

Let &:y?=x®—2xoverFyg
€] =20, G = (2,2) is a generator.

Let f(x,y) = x.
_ ([ x(nG)
on = ( 19 >
Why Eyg is not pseudorandom?
Let nG = (x, y), then

en enito = (f(nG)) ) (f((n t;o)e)>

( #(nG) - f(1ngG + 106))

(X’((i)z_)()) -1,
Yy

2
(L) = =_ 2 _ 3 _
X ((X) x>, 2 mod y© = x° — 2x over Fqg
is a constant function!

_ (f(nG) : f(?;n (0,0)))

since



Sequences generated from Elliptic Curves, example

Let &:y?=x®—2xoverFyg
€] =20, G = (2,2) is a generator.

Let f(x,y) = x.
- (42)

Why Eyg is not pseudorandom?

Let nG = (x, y), then
f(nG)) ' (f((n+10)G)> _ (f(nG) - f(nG+1OG))
19

en- € =
" Entio (19 19

(nG)-f(nG+(0,0))) _ (X‘ ((i)z"()) .
19

(f
B 19

since
2
X- ((y) —x) = -2 mod y? = x3 — 2x over Fqg

is a constant function!

Thus the original sequence
n+— x(nG) € Fp,

is also not pseudorandom.
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Sequences generated from Elliptic Curves,
admissibility
In general: the C,(Er) is small, if the function
F(P)=f(P+ diG)...f(P+ d:G) € Fp(&)
is not a square.
Definition
(k, ¢, m) is a d-admissible triple, if there are no multisets A, B C Zm such that
> |Al =k, [Bl=¢
» the number of solution ofa+ b= c, a€ A, b € B is divisible by d.
Let k = | Supp(f)|, m = p, d = 2. If the triple (Supp(f), ¢, p) is 2-admissible,

then the function F is not a square.
If

» A : the multiset of the zeros and poles of f;
» B:{d1G,...,dgG};
» Fis asquare,

then a+ b = ¢ has even number of solution for each c.
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Let G be a generator of £(Fp), and f € Fp(&), and let us define ET = (eq, ..., er) by

o= { (B2) nat(nG)#0,0,
417 haf(nG)=0,0.

Let G be a generator of £(Fp), and f € Fp(E), x is a multiplicative character of Fp, and let us define

Er = (er,...,er) by }
o= { +1  if arg (x(f(nG))) € [0, )

—1  otherwise.

X(f(nG)) = en = +1

x(f(mG)) = em = —1



If the order of G is T, and the order of x is d then
W(Er) < | Supp(f)|p'/?(1 + log T)log d.
If the triple (| Supp(f)|, ¢, T) is d-admissible, then

Cu(Er) < £10°| Supp(f)|p'2(1 + log T)(log d)".



Sequences generated from Elliptic Curves, general
construction

Theorem
If the order of G is T, and the order of x is d then

W(Er) < | Supp(f)|p'/?(1 + log T)log d.
If the triple (| Supp(f)|, ¢, T) is d-admissible, then

Ce(Er) < £10°| Supp(f)|p'/3(1 + log T)(log d)*.

The proof is based on the notion of admissibility and an elliptic curve
analogue of the Weil bound.
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Sequences generated from Elliptic Curves, general
construction

Theorem
If the order of G is T, and the order of x is d then

W(Er) < | Supp(f)|p'/?(1 + log T)log d.
If the triple (| Supp(f)|, ¢, T) is d-admissible, then

Ce(Er) < £10°| Supp(f)|p'/3(1 + log T)(log d)*.

The proof is based on the notion of admissibility and an elliptic curve
analogue of the Weil bound.

Special cases:
» d = 2: Legendre symbol sequence over elliptic curves.

» d = p— 1: Chen, Xiao: Elliptic curve analogue of a construction of
Gyarmati based on the discrete logarithm.



Admissibility

Theorem
Let p(m) be the smallest prime factor of m. Then

» If k < p(m), then the triple (k,2, m) is d-admissible.
> If
(46)% < p(m),
then (k. ¢, m) is d-admissible.
» If mis a prime, and each prime factor of d is primitive root
modulo m, then (k, ¢, m) is d-admissible.

Note: It is enough to prove the theorem in the case when d is a
prime number.



Proof of the admissibility .

If there exist multisets A, BB, such that
> [Al =k, |B| =2
» for each c if the equation a + b = ¢ has solution, then there
are at least two.

Let B={r,r+s} (s #0).
Then each elements of A + r has at least two representations

So
Al ={a+rlac A} =|{a+r+s|ac A} =
=Ha+r+st|ae A} = p(m),

since {a+ r + st | a € A} is a not-trivial co-set of Z,, which
contradicts to the condition k < p(m).



Proof of the admissibility IlI.

Let p = m, d be prime numbers.
For a given multiset C C Z,, let

Pe(x) = Z X,

ceC
(where rm(c) is the least non-negative residue of ¢ modulo p.)

For a given u € Z, we have
Puse(x) = x" - Pe(x) mod x” — 1 over Zg.
In A 4+ B each element is represented in d ways if and only if
P(x) - Ps(x) = Pasp(x) =0 mod x° — 1 over Zg.
So there are no multisets A, B if the polinomial

xP —1
X —1

=xPT 4.

is irreducible over Zg, i.e. d is primitive root modulo p.



Sequences generated from Elliptic Curves

Let G be a generator of £(Fp) (or at least an element with large
order). Then
n+— x(nG) € Fp,

or in general
n+— f(nG) € Fp,

where f € Fp(E).
In order to generate binary sequences we have to choose one
of the bits of f(nG):

f(nG)

Chen: n —

p
+1 if f(nG) € {0,1,2..., 2.1}

Liu, Zhan, Wang: n ~— {_1 otherwise

Here <;) is the Legendre symbol modulo p.



Let G be a generator of £(Fp), and f € Fp(&), and let us define
Er = (61,"'767') by

_ [ +1 f(nG)e{0,1,2,...,25"}
en = :
—1 otherwise.



An other construction

Construction
Let G be a generator of E(Fy), and f € Fyp(E), and let us define
ETZ (91,...,97') by

o _{ +1 HnG)€{0,1,2,...,25"}
"7 1 =1 otherwise.

Liu, Zhan, Wang:

» fis a"polynomial", i.e. the O is the only pole of f;

» 1/fis a "polynomial", i.e. the O is the only zero of f;
What can we say, when f is a general function?



Againlet &:y? =x®—2x over Fyg
|€] =20, G = (2,2) is a generator.
Let f(x,y) = 9x + 1.

+19x(nG) + g € {0,1,2,...,9}
en = .
—1 otherwise.



An other construction, an example

Again let

E:y? =x%—2x over Fyg

I€| = 20, G = (2,2) is a generator.
Let f(x,y) = 9x + 1.

_{ +1 9x(nG) + 55 €{0,1,2,...,9}
en = .

—1 otherwise.

n nG f(nG) | en n nG f(nG) | en
1 (2,2) 9 11| (18,1) 9
2 (7,14) 17 12 | (16.,6) 17
3 (15,1) 16 13 | (10,12) 16
4 (11,6) 11 14 | (5,18) 11
5 | (13,10) 6 15 | (13,9) 6
6 | (5,1) 11 16 | (11,13) | 11
7 | (10,7) 16 17 | (15,18) 16
8 | (16,13) 17 18 | (7,5) 17
9 | (18,18) 9 19 | (2,17) 9
10 (0,0) 00 20 O 00




An other construction, an example

Again let

Let f(x,y) = 9x + 1.

e {

E:y? =x%—2x over Fyg
I€] = 20, G = (2,2) is a generator.

+1 9x(nG) + g € {0,1,2,...,9}

—1 otherwise.
n nG f(nG) | en n nG f(nG) | en
1 (2,2) 9 +1 11| (18 ,1) 9
2 (7,14) 17 12 | (16,6) 17
3 (15,1) 16 13 | (10,12) 16
4 (11,6) 11 14 | (5,18) 11
5 (13,10) 6 15 | (13,9) 6
6 (5,1) 11 16 | (11,13) 11
7 (10,7) 16 17 | (15,18) 16
8 | (16,13) 17 18 (7,5) 17
9 | (18,18) 9 19 | (2,17) 9
10 (0,0) 0 20 @ o)




An other construction, an example

Again let

Let f(x,y) = 9x + 1.

e {

E:y? =x%—2x over Fyg
I€] = 20, G = (2,2) is a generator.

+1 9x(nG) + g € {0,1,2,...,9}

—1 otherwise.
n nG f(nG) | en n nG f(nG) | en
1 (2,2) 9 +1 11| (18 ,1) 9
2 (7,14) 17 -1 12 | (16,6) 17
3 (15,1) 16 13 | (10,12) 16
4 (11,6) 11 14 | (5,18) 11
5 (13,10) 6 15 | (13,9) 6
6 (5,1) 11 16 | (11,13) 11
7 (10,7) 16 17 | (15,18) 16
8 | (16,13) 17 18 (7,5) 17
9 | (18,18) 9 19 | (2,17) 9
10 (0,0) 0 20 @ o)




An other construction, an example

Again let

Let f(x,y) = 9x + 1.

e {

E:y? =x%—2x over Fyg
I€] = 20, G = (2,2) is a generator.

+1 9x(nG) + g € {0,1,2,...,9}

—1 otherwise.
n nG f(nG) | en n nG f(nG) | en
1 (2,2) 9 +1 11| (18 ,1) 9
2 (7,14) 17 -1 12 | (16,6) 17
3 (15,1) 16 -1 13 | (10,12) 16
4 (11,6) 11 14 | (5,18) 11
5 (13,10) 6 15 | (13,9) 6
6 (5,1) 11 16 | (11,13) 11
7 (10,7) 16 17 | (15,18) 16
8 | (16,13) 17 18 (7,5) 17
9 | (18,18) 9 19 | (2,17) 9
10 (0,0) 0 20 @ o)




An other construction, an example

Again let

Let f(x,y) = 9x + 1.

E:y? =x%—2x over Fyg
I€] = 20, G = (2,2) is a generator.

o _{ +1 9x(nG) + g € {0,1,2,...,9}
"7 -1 otherwise.
n nG f(nG) | en n nG f(nG) | en
1 2,2) 9 |+ 1] (8,1) | 9 |+
2 (7,14) 17 -1 12 | (16,6) 17 -1
3 (15,1) 16 -1 13 | (10,12) 16 -1
4 (11,6) 11 -1 14 | (5,18) 11 -1
5 | (13,10) 6 +1 15 | (13,9) 6 +1
6 (5,1) 11 -1 16 | (11,13) 11 -1
7 (10,7) 16 -1 17 | (15,18) 16 -1
8 | (16,13) | 17 -1 18 | (7,5) 17 -1
9 | (18,18) | 9 | +1 19 | (2,17) 9 | +1
10 | (0,0) 00 -1 20 o 00 -1




Againlet &:y? =x®—2x over Fyq
|€] =20, G = (2,2) is a generator.
Let f(x,y) = 9x + 1.

+1 9x(nG) + g € {0,1,2,...,9}
en = .
—1 otherwise.

Why this sequence is not random?
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Againlet &:y? =x®—2x over Fyg
I€] = 20, G = (2,2) is a generator.
Let f(x,y) = 9x + 1.

]
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—1 otherwise.

Why this sequence is not random?
The correlation measure Cy(Ex) is large:
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An other construction, an example

Againlet &:y? =x®—2x over Fyg
I€] = 20, G = (2,2) is a generator.
Let f(x,y) = 9x + 1.

+1 9x(nG) + g € {0,1,2,...,9}
en = .
—1 otherwise.

Why this sequence is not random?
The correlation measure Cy(Ex) is large:

en-epr1o=+1 forn=1,2,...,10.

By using additive character sums, it can be shown that the correlation
measure of order ¢ is small, if none of the functions

F(P)=hy - (P + 01G) + -+ hy - (P + dyG) (hy.....h) €F5\ (0, ..

are constant.

.,0)



An other construction, an example

Againlet &:y? =x®—2x over Fyg
I€] = 20, G = (2,2) is a generator.
Let f(x,y) = 9x + 1.

+1 9x(nG) + g € {0,1,2,...,9}
en = .
—1 otherwise.

Why this sequence is not random?
The correlation measure Cy(Ex) is large:

en-epr1o=+1 forn=1,2,...,10.

By using additive character sums, it can be shown that the correlation
measure of order ¢ is small, if none of the functions

F(P)=hy-((P+ 01G) + -+ hy - (P + dyG) (hy,....h) €F5\(0,...,0)

are constant.
But




Let G be a generator of E(Fp), and f € Fp(E), and let us define
Er=(ei,...,er) by

o RIS (G052 e
"7 1 =1 otherwise.



An other construction

Construction (Mérai)
Let G be a generator of £(Fp), and f € Fp(&), and let us define
Er = (81,...,67') b}/

o RIS (G052 e
"7 1 =1 otherwise.

For general rational functions:

Theorem
If the order of G is T then

W(Er) < | Supp(f)|p'/?logplog T.
If p(T) is the least prime divisor of p and
» | Supp(f)| < p(T) and ¢ =2, or

> (4] Supp(f)|)* < p(T),
then
Ce(Er) < £| Supp()|p'/?(log p)**"log T



Extension of constructions to several dimensions

The extension of binary sequences in several dimensions,
called binary lattice:

n:{1,2,...,N}" — {+1, -1}

We can define the analogue of the measures of
pseudorandomness in several dimensions: Qy(n).

Application:
» encryption of several dimensions map or picture via the
analogue of the Vernam cipher.



Let g = p" be a prime power, us, ..., u, € Fy is a basis over Fp. Let f € Fq[x]



Let g = p" be a prime power, us, ..., u, € Fy is a basis over Fp. Let f € Fq[x]
» Huber, Mauduit, Sarkdzy:

n(X1,...,Xn) = x2 (F(x1us + - - - + XnUn)) ,

where x: is the quadratic character over Fy.



Constructions of binary lattices

Let g = p" be a prime power, us, ..., u, € Fy is a basis over Fp. Let f € Fq[x]
» Huber, Mauduit, Sarkdzy:

’I](X1,.4.,Xn) = X2 (f(X1U1 =+ +Xnun)),
where x: is the quadratic character over Fy.
» Mérai:
n(xi,...,xn) = +1, if arg (X(f(x1 uy+ - +xnun))> € [0, ),

where x is a general multiplicative character.



Constructions of binary lattices

Let g = p" be a prime power, us, ..., u, € Fy is a basis over Fp. Let f € Fq[x]
» Huber, Mauduit, Sarkdzy:

’I](X1,.4.,Xn) = X2 (f(X1U1 =+ +Xnun)),
where x: is the quadratic character over Fy.
» Mérai:
n(xi,...,xn) = +1, if arg (X(f(x1 uy+ - +xnun))) € [0, ),

where x is a general multiplicative character.
» Mauduit, Sarkbzy:

(X1, ..., %) = F 1 (XqUs + - + Xnln) € B,

where x~ ' is the multiplicative inverse of x, B C Fg.



The points Py, . . ., Pp € £ are weakly independents if

APy 4+ ApPp =0 = \;Pj=Oforeachi=1,...,n.



The points Py, . . ., Pp € £ are weakly independents if

APy + -+ ApPp =0 = \jPj=0Oforeachi=1,...,n.
LetPq, ..., Py € & are weakly independent element, let us define n by

f(xyP1+-+-+xnPn) 5 L
77()(‘1’.“1)“1):{ ( il if X Py + + xpPn # O

—1 otherwise.



Construction of binary lattice from elliptic curves
Definition
The points Py, . . ., Ph € € are weakly independents if

APy 4+ XpPp =0 = \jPj=Oforeachi=1,...,n.

Construction (Mérai)

LetPq, ..., Py € & are weakly independent element, let us define n by
f(xqPy+---+xnPn) 5 .
T (7;; if X Py + + xnPn # O
—1 otherwise.

P if £ is not cyclic, and P, Q € £ are the echelonized generators, then they are weakly independents.



Construction of binary lattice from elliptic curves
Definition
The points Py, . . ., Ph € € are weakly independents if

APy 4+ 4+ XpPp =0 = \;Pj=0Oforeachi=1,...,n.

Construction (Mérai)

LetPq, ..., Py € & are weakly independent element, let us define n by
f(xqPy+---+xnPn) 5 .
T (7;; if X Py + + xnPn # O
=1l otherwise.

P if £ is not cyclic, and P, Q € £ are the echelonized generators, then they are weakly independents.

P IfP € & |P| = aj...apsuch that the numbers o . . . aup are pairwise co-prime, then the elements

P Pl
P, ,Ph=—P
aq an

P =

are weakly independents.



Construction of binary lattice from elliptic curves

17(X1,.,.,Xn): ( P ) |fX1P1.+ +XnPn7£O
-1 otherwise.

Theorem

LetH be the subgroup generated by Ps, ..., P, p(H) is the least prime
divisor of |H|. If

» | Supp(f)| < P(H) and ¢ = 2; or
» 40 Sup(fl+£) - p(H),
then
Qi Knor P2,



Construction of binary lattice from elliptic curves

17(X1,.,.7Xn): ( P ) |fX1P1.+ +XnPn7£O
-1 otherwise.

Theorem

LetH be the subgroup generated by Ps, ..., P, p(H) is the least prime
divisor of |H|. If

» |Supp(f)| < P(H) and £ = 2; or
> 47(SweDI+0)  p(H),

then

Qe Lot p'/3te.

» Good constructions can be defined with general multiplicative
characters.

» The proof based on the notion of admissibility over general (not cyclic)
Abelian group and character sum estimates over elliptic curves.
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Thank Youl!
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