Pseudorandom Binary Sequences from Elliptic Curves

László Mérai

Rényi Institute Budapest, Hungary

June 12, 2010

Definition

Definition

- ▶ If the sequence is *infinite*, then we can test it by complexity theory, etc.
- ▶ If the sequence is *finite*, we can only study its statistical properties

Definition

- ▶ If the sequence is *infinite*, then we can test it by complexity theory, etc.
- ▶ If the sequence is finite, we can only study its statistical properties
 - well-distribution relative to arithmetic progression

Definition

- ▶ If the sequence is *infinite*, then we can test it by complexity theory, etc.
- ▶ If the sequence is *finite*, we can only study its statistical properties
 - well-distribution relative to arithmetic progression
 - normality
 - auto-correlation

Definition

A sequence can be considered as a pseudorandom sequence, if it cannot be distinguish from random sequences.

- ▶ If the sequence is *infinite*, then we can test it by complexity theory, etc.
- If the sequence is finite, we can only study its statistical properties
 - well-distribution relative to arithmetic progression
 - normality
 - auto-correlation

Maudit and Sárközy introduced several measures of pseudorandomness focusing on this properties.

If we want to consider a sequence as pseudorandom, then it must be indistinguishable from random sequences with respect to these measures.

Measures of pseudorandomness

Let $E_N = (e_1, \dots, e_N) \in \{-1, +1\}^N$ be a finite binary sequence. Then

Definition (Mauduit, Sárközy)

The well-distribution measure of E_N :

$$W(E_N) = \max_{a,b,t} \left| \sum_{j=1}^{t-1} e_{a+jb} \right|,$$

where $a, b, t \in \mathbb{N}$, $a + (t - 1)b \leq N$.

The correlation measure of order ℓ of E_N :

$$C_{\ell}(E_N) = \max_{M,D} \left| \sum_{j=1}^M e_{n+d_1} e_{n+d_2} \dots e_{n+d_{\ell}} \right|,$$

$$D=(d_1,d_2,\ldots,d_\ell), M\in\mathbb{N}, M+d_\ell\leq N.$$

Measures of pseudorandomness

Theorem (Alon, Kohayakava, Mauduit, Moreira, Rödl)

If E_N is a truly random sequence, then we have

$$\frac{1}{\delta}\sqrt{N} < W(E_N) < \delta\sqrt{N}$$

and

$$\frac{2}{5}\sqrt{N\log\binom{N}{\ell}} < C_{\ell}(E_N) < \frac{7}{4}\sqrt{N\log\binom{N}{\ell}}.$$

with probability at least $1 - \varepsilon$.

Measures of pseudorandomness

Theorem (Alon, Kohayakava, Mauduit, Moreira, Rödl)

If E_N is a truly random sequence, then we have

$$\frac{1}{\delta}\sqrt{N} < W(E_N) < \delta\sqrt{N}$$

and

$$\frac{2}{5}\sqrt{N\log\binom{N}{\ell}} < C_{\ell}(E_N) < \frac{7}{4}\sqrt{N\log\binom{N}{\ell}}.$$

with probability at least $1 - \varepsilon$.

Definition

The E_N sequence is considered as a pseudorandom sequence if

$$W(E_N) \ll N^{1/2} \log N^c$$
 ill. $C_\ell(E_N) \ll \ell N^{1/2} \log N^{c'}$.

Several construction have been tested in terms of these measures earlier:

► Goubin, Mauduit, Sárközy: Legendre symbol sequence:

$$e_n = \left(\frac{f(n)}{p}\right)$$

Several construction have been tested in terms of these measures earlier:

► Goubin, Mauduit, Sárközy: Legendre symbol sequence:

$$e_n = \left(\frac{f(n)}{p}\right)$$

Rivat, Mauduit, Sárközy: Residue of a polynomial:

$$e_n = +1 \Leftrightarrow f(n) \in \{0, 1, 2, \dots, \frac{p-1}{2}\}$$

Several construction have been tested in terms of these measures earlier:

Goubin, Mauduit, Sárközy: Legendre symbol sequence:

$$e_n = \left(\frac{f(n)}{p}\right)$$

Rivat, Mauduit, Sárközy: Residue of a polynomial:

$$e_n = +1 \quad \Leftrightarrow \quad f(n) \in \{0, 1, 2, \dots, \frac{p-1}{2}\}$$

Gyarmati: Construction based on the discrete logarithm:

$$e_n = +1 \Leftrightarrow \log f(n) \in \{0, 1, 2, \dots, \frac{p-1}{2}\}$$

Several construction have been tested in terms of these measures earlier:

► Goubin, Mauduit, Sárközy: Legendre symbol sequence:

$$e_n = \left(\frac{f(n)}{p}\right)$$

Rivat, Mauduit, Sárközy: Residue of a polynomial:

$$e_n = +1 \quad \Leftrightarrow \quad f(n) \in \{0, 1, 2, \dots, \frac{p-1}{2}\}$$

Gyarmati: Construction based on the discrete logarithm:

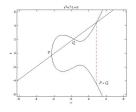
$$e_n = +1 \Leftrightarrow \log f(n) \in \{0, 1, 2, \dots, \frac{p-1}{2}\}$$

Gyarmati, Pethő, Sárközy: A transform of sequences generating by linear recursion:

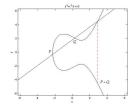
$$x_n \equiv c_1 x_{n-1} + c_2 x_{n-2} + \cdots + c_h x_{n-h} \pmod{p}$$
 $e_n = \left(\frac{x_n}{p}\right)$

Here $f \in \mathbb{F}_p[x]$, $\left(\frac{\cdot}{p}\right)$ is the Legendre symbol modulo p.

$$\mathcal{E}(\mathbb{F}_p) = \{(x,y): y^2 = x^3 + Ax + B\}, \quad A,B \in \mathbb{F}_p.$$

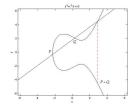


$$\mathcal{E}(\mathbb{F}_p) = \{(x,y) : y^2 = x^3 + Ax + B\}, \quad A, B \in \mathbb{F}_p.$$



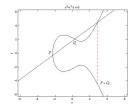
▶ $(\mathcal{E}(\mathbb{F}_p), +)$ is an Abelian group.

$$\mathcal{E}(\mathbb{F}_p) = \{(x,y) : y^2 = x^3 + Ax + B\}, \quad A, B \in \mathbb{F}_p.$$



- $\blacktriangleright \ (\mathcal{E}(\mathbb{F}_{\rho}),+) \text{ is an Abelian group.}$
- ▶ The neutral element of \mathcal{E} is \mathcal{O} .

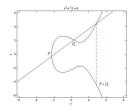
$$\mathcal{E}(\mathbb{F}_p) = \{(x,y) : y^2 = x^3 + Ax + B\}, \quad A, B \in \mathbb{F}_p.$$



- ▶ $(\mathcal{E}(\mathbb{F}_p), +)$ is an Abelian group.
- ▶ The neutral element of \mathcal{E} is \mathcal{O} .
- ▶ The number of points in $\mathcal{E}(\mathbb{F}_p)$ satisfies:

$$|p+1-|\mathcal{E}(\mathbb{F}_p)||\leq 2\sqrt{q}.$$

$$\mathcal{E}(\mathbb{F}_p) = \{(x,y) : y^2 = x^3 + Ax + B\}, \quad A, B \in \mathbb{F}_p.$$



- ▶ $(\mathcal{E}(\mathbb{F}_p), +)$ is an Abelian group.
- ▶ The neutral element of \mathcal{E} is \mathcal{O} .
- ▶ The number of points in $\mathcal{E}(\mathbb{F}_p)$ satisfies:

$$|p+1-|\mathcal{E}(\mathbb{F}_p)||\leq 2\sqrt{q}$$
.

▶ The set of rational function f(P)(=f(x,y)) on \mathcal{E} is

$$\mathbb{F}_p(\mathcal{E}) = \mathbb{F}_p(x, y)/(y^2 = x^3 + Ax + B).$$

▶ We will use the notation: P = (x(P), y(P)).

Let G be a generator of $\mathcal{E}(\mathbb{F}_p)$ (or at least an element with large order). Then

$$n \longmapsto x(nG) \in \mathbb{F}_p$$

Let G be a generator of $\mathcal{E}(\mathbb{F}_p)$ (or at least an element with large order). Then

$$n \longmapsto x(nG) \in \mathbb{F}_p$$

or in general

$$n \longmapsto f(nG) \in \mathbb{F}_p$$

where $f \in \mathbb{F}_p(\mathcal{E})$.

Let G be a generator of $\mathcal{E}(\mathbb{F}_p)$ (or at least an element with large order). Then

$$n \longmapsto x(nG) \in \mathbb{F}_p$$

or in general

$$n \longmapsto f(nG) \in \mathbb{F}_p$$

where $f \in \mathbb{F}_p(\mathcal{E})$.

In order to generate *binary* sequences we have to choose one of the bits of f(nG):

Chen:
$$n \mapsto \left(\frac{f(nG)}{p}\right)$$

Let G be a generator of $\mathcal{E}(\mathbb{F}_p)$ (or at least an element with large order). Then

$$n \longmapsto x(nG) \in \mathbb{F}_p$$

or in general

$$n \longmapsto f(nG) \in \mathbb{F}_p$$

where $f \in \mathbb{F}_p(\mathcal{E})$.

In order to generate *binary* sequences we have to choose one of the bits of f(nG):

$$\begin{array}{lll} \text{Chen:} & n & \mapsto & \left(\frac{f(nG)}{p}\right) \\ \text{Liu, Zhan, Wang:} & n & \mapsto & \left\{ \begin{array}{ll} +1 & \text{if } f(nG) \in \{0,1,2\dots,\frac{p-1}{2}\} \\ -1 & \text{otherwise} \end{array} \right. \end{array}$$

Here $\left(\frac{\cdot}{p}\right)$ is the Legendre symbol modulo p.

Let G be a generator of $\mathcal{E}(\mathbb{F}_p)$ (or at least an element with large order). Then

$$n \longmapsto x(nG) \in \mathbb{F}_p$$

or in general

$$n \longmapsto f(nG) \in \mathbb{F}_p$$
,

where $f \in \mathbb{F}_p(\mathcal{E})$.

In order to generate *binary* sequences we have to choose one of the bits of f(nG):

$$\begin{array}{lll} \text{Chen:} & n & \mapsto & \left(\frac{f(nG)}{p}\right) \\ \text{Liu, Zhan, Wang:} & n & \mapsto & \left\{ \begin{array}{ll} +1 & \text{if } f(nG) \in \{0,1,2\dots,\frac{p-1}{2}\} \\ -1 & \text{otherwise} \end{array} \right. \end{array}$$

Here $\left(\frac{\cdot}{p}\right)$ is the Legendre symbol modulo p.

Let
$$\mathcal{E}: y^2 = x^3 - 2x$$
 over \mathbb{F}_{19}
 $|\mathcal{E}| = 20$, $G = (2,2)$ is a generator.
Let $f(x,y) = x$.

$$e_n = \left(\frac{x(nG)}{19}\right)$$

n	nG	e n	n	nG	e n
1	(2,2)	-1	11	(18 ,1)	
2	(7,14)		12	(16,6)	
3	(15,1)		13	(10,12)	
4	(11,6)		14	(5,18)	
5	(13,10)		15	(13,9)	
6	(5,1)		16	(11,13)	
7	(10,7)		17	(15,18)	
8	(16,13)		18	(7,5)	
9	(18,18)		19	(2,17)	
10	(0,0)		20	O	

$$e_n = \left(\frac{x(nG)}{19}\right)$$

n	nG	e n	n	nG	e _n
1	(2,2)	-1	11	(18 ,1)	
2	(7,14)	+1	12	(16,6)	
3	(15,1)		13	(10,12)	
4	(11,6)		14	(5,18)	
5	(13,10)		15	(13,9)	
6	(5,1)		16	(11,13)	
7	(10,7)		17	(15,18)	
8	(16,13)		18	(7,5)	
9	(18,18)		19	(2,17)	
10	(0,0)		20	O	

$$e_n = \left(\frac{x(nG)}{19}\right)$$

n	nG	e n	n	nG	e n
1	(2,2)	-1	11	(18 ,1)	
2	(7,14)	+1	12	(16,6)	
3	(15,1)	-1	13	(10,12)	
4	(11,6)		14	(5,18)	
5	(13,10)		15	(13,9)	
6	(5,1)		16	(11,13)	
7	(10,7)		17	(15,18)	
8	(16,13)		18	(7,5)	
9	(18,18)		19	(2,17)	
10	(0,0)		20	O	

$$e_n = \left(\frac{x(nG)}{19}\right)$$

n	nG	e n	n	nG	e n
1	(2,2)	-1	11	(18 ,1)	-1
2	(7,14)	+1	12	(16,6)	+1
3	(15,1)	-1	13	(10,12)	-1
4	(11,6)	+1	14	(5,18)	+1
5	(13,10)	-1	15	(13,9)	-1
6	(5 ,1)	+1	16	(11,13)	+1
7	(10,7)	-1	17	(15,18)	-1
8	(16,13)	+1	18	(7,5)	+1
9	(18, 18)	-1	19	(2,17)	-1
10	(0,0)	+1	20	O	+1

Let
$$\mathcal{E}: y^2 = x^3 - 2x$$
 over \mathbb{F}_{19}
 $|\mathcal{E}| = 20$, $G = (2,2)$ is a generator.
Let $f(x,y) = x$.

$$e_n = \left(\frac{x(nG)}{19}\right)$$

Why E_{20} is *not* pseudorandom?

Let
$$\mathcal{E}: y^2 = x^3 - 2x$$
 over \mathbb{F}_{19}
 $|\mathcal{E}| = 20, G = (2,2)$ is a generator.
Let $f(x,y) = x$.

$$e_n = \left(\frac{x(nG)}{19}\right)$$

Why E_{20} is *not* pseudorandom? Let nG = (x, y), then

$$\begin{split} e_n \cdot e_{n+10} &= \left(\frac{f(nG)}{19}\right) \cdot \left(\frac{f((n+10)G)}{19}\right) = \left(\frac{f(nG) \cdot f(nG+10G)}{19}\right) \\ &= \left(\frac{f(nG) \cdot f(nG+(0,0))}{19}\right) = \left(\frac{x \cdot \left(\left(\frac{y}{x}\right)^2 - x\right)}{19}\right) = 1, \end{split}$$

Let
$$\mathcal{E}: y^2 = x^3 - 2x$$
 over \mathbb{F}_{19}
 $|\mathcal{E}| = 20$, $G = (2,2)$ is a generator.
Let $f(x,y) = x$.

$$e_n = \left(\frac{x(nG)}{19}\right)$$

Why E_{20} is *not* pseudorandom? Let nG = (x, y), then

$$e_n \cdot e_{n+10} = \left(\frac{f(nG)}{19}\right) \cdot \left(\frac{f((n+10)G)}{19}\right) = \left(\frac{f(nG) \cdot f(nG+10G)}{19}\right)$$
$$= \left(\frac{f(nG) \cdot f(nG+(0,0))}{19}\right) = \left(\frac{x \cdot \left(\left(\frac{y}{x}\right)^2 - x\right)}{19}\right) = 1,$$

since

$$x \cdot \left(\left(\frac{y}{x} \right)^2 - x \right) \equiv -2 \mod y^2 = x^3 - 2x \text{ over } \mathbb{F}_{19}$$

is a constant function!

Let
$$\mathcal{E}: y^2 = x^3 - 2x$$
 over \mathbb{F}_{19}
 $|\mathcal{E}| = 20$, $G = (2,2)$ is a generator.
Let $f(x,y) = x$.

$$e_n = \left(\frac{x(nG)}{19}\right)$$

Why E_{20} is *not* pseudorandom?

Let nG = (x, y), then

$$\begin{split} \mathbf{e}_n \cdot \mathbf{e}_{n+10} &= \left(\frac{f(nG)}{19}\right) \cdot \left(\frac{f((n+10)G)}{19}\right) = \left(\frac{f(nG) \cdot f(nG+10G)}{19}\right) \\ &= \left(\frac{f(nG) \cdot f(nG+(0,0))}{19}\right) = \left(\frac{x \cdot \left(\left(\frac{y}{x}\right)^2 - x\right)}{19}\right) = 1, \end{split}$$

since

$$x \cdot \left(\left(\frac{y}{x} \right)^2 - x \right) \equiv -2 \mod y^2 = x^3 - 2x \text{ over } \mathbb{F}_{19}$$

is a constant function!

Thus the original sequence

$$n \longmapsto x(nG) \in \mathbb{F}_p$$

is also not pseudorandom.

Sequences generated from Elliptic Curves, admissibility

In general: the $C_{\ell}(E_T)$ is small, if the function

$$F(P) = f(P + d_1G) \dots f(P + d_\ell G) \in \mathbb{F}_p(\mathcal{E})$$

is not a square.

Sequences generated from Elliptic Curves, admissibility

In general: the $C_{\ell}(E_T)$ is small, if the function

$$F(P) = f(P + d_1G) \dots f(P + d_\ell G) \in \mathbb{F}_p(\mathcal{E})$$

is not a square.

Definition

 (k, ℓ, m) is a d-admissible triple, if there are no multisets $\mathcal{A}, \mathcal{B} \subset \mathbb{Z}_m$ such that

- \blacktriangleright $|\mathcal{A}| = k$, $|\mathcal{B}| = \ell$
- ▶ the number of solution of a + b = c, $a \in A$, $b \in B$ is divisible by d.

Sequences generated from Elliptic Curves, admissibility

In general: the $C_{\ell}(E_{T})$ is small, if the function

$$F(P) = f(P + d_1G) \dots f(P + d_\ell G) \in \mathbb{F}_p(\mathcal{E})$$

is not a square.

Definition

 (k, ℓ, m) is a d-admissible triple, if there are no multisets $\mathcal{A}, \mathcal{B} \subset \mathbb{Z}_m$ such that

- \blacktriangleright $|\mathcal{A}| = k$, $|\mathcal{B}| = \ell$
- ▶ the number of solution of a + b = c, $a \in A$, $b \in B$ is divisible by d.

Let $k = |\operatorname{Supp}(f)|, m = p, d = 2$. If the triple $(\operatorname{Supp}(f), \ell, p)$ is 2-admissible, then the function F is *not* a square. If

- A: the multiset of the zeros and poles of f;
- $\triangleright \mathcal{B} = \{d_1G, \ldots, d_\ell G\};$
- F is a square,

then a + b = c has even number of solution for each c.

Sequences generated from Elliptic Curves, general construction

Construction (Chen)

Let G be a generator of $\mathcal{E}(\mathbb{F}_p)$, and $f \in \mathbb{F}_p(\mathcal{E})$, and let us define $E_T = (e_1, \dots, e_T)$ by

$$e_n = \left\{ egin{array}{ll} \left(rac{f(nG)}{p}
ight) & \mbox{ ha } f(nG) \neq 0, \mathcal{O}, \\ +1 & \mbox{ ha } f(nG) = 0, \mathcal{O}. \end{array} \right.$$

Construction (Chen)

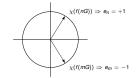
Let G be a generator of $\mathcal{E}(\mathbb{F}_p)$, and $f \in \mathbb{F}_p(\mathcal{E})$, and let us define $E_T = (e_1, \dots, e_T)$ by

$$e_n = \begin{cases} & \left(\frac{f(nG)}{p}\right) & \text{ ha } f(nG) \neq 0, \mathcal{O}, \\ & +1 & \text{ ha } f(nG) = 0, \mathcal{O}. \end{cases}$$

Construction (Mérai)

Let G be a generator of $\mathcal{E}(\mathbb{F}_p)$, and $f \in \mathbb{F}_p(\mathcal{E})$, χ is a multiplicative character of \mathbb{F}_p , and let us define $E_T = (e_1, \dots, e_T)$ by

$$e_n = \begin{cases} +1 & \text{if } \arg (\chi(f(nG))) \in [0, \pi) \\ -1 & \text{otherwise.} \end{cases}$$



Theorem

If the order of G is T, and the order of χ is d then

$$W(E_T) \ll |\operatorname{Supp}(f)| p^{1/2} (1 + \log T) \log d$$
.

If the triple ($|\operatorname{Supp}(f)|, \ell, T$) is d-admissible, then

$$C_{\ell}(E_T) \ll \ell 10^{\ell} |\operatorname{Supp}(f)| p^{1/2} (1 + \log T) (\log d)^{\ell}.$$

Theorem

If the order of G is T, and the order of χ is d then

$$W(E_T) \ll |\operatorname{Supp}(f)| p^{1/2} (1 + \log T) \log d.$$

If the triple ($|\operatorname{Supp}(f)|, \ell, T$) is d-admissible, then

$$C_{\ell}(E_T) \ll \ell 10^{\ell} |\operatorname{Supp}(f)| p^{1/2} (1 + \log T) (\log d)^{\ell}.$$

The proof is based on the notion of admissibility and an elliptic curve analogue of the Weil bound.

Theorem

If the order of G is T, and the order of χ is d then

$$W(E_T) \ll |\operatorname{Supp}(f)| p^{1/2} (1 + \log T) \log d.$$

If the triple ($|\operatorname{Supp}(f)|, \ell, T$) is d-admissible, then

$$C_{\ell}(E_T) \ll \ell 10^{\ell} |\operatorname{Supp}(f)| p^{1/2} (1 + \log T) (\log d)^{\ell}.$$

The proof is based on the notion of admissibility and an elliptic curve analogue of the Weil bound.

Special cases:

ightharpoonup d = 2: Legendre symbol sequence over elliptic curves.

Theorem

If the order of G is T, and the order of χ is d then

$$W(E_T) \ll |\operatorname{Supp}(f)| p^{1/2} (1 + \log T) \log d.$$

If the triple ($|\operatorname{Supp}(f)|, \ell, T$) is d-admissible, then

$$C_{\ell}(E_T) \ll \ell 10^{\ell} |\operatorname{Supp}(f)| p^{1/2} (1 + \log T) (\log d)^{\ell}.$$

The proof is based on the notion of admissibility and an elliptic curve analogue of the Weil bound.

Special cases:

- ▶ d = 2: Legendre symbol sequence over elliptic curves.
- ▶ d = p 1: Chen, Xiao: Elliptic curve analogue of a construction of Gyarmati based on the discrete logarithm.

Admissibility

Theorem

Let p(m) be the smallest prime factor of m. Then

- ▶ If k < p(m), then the triple (k, 2, m) is d-admissible.
- ► If

$$(4\ell)^k < p(m),$$

then (k, ℓ, m) is d-admissible.

▶ If m is a prime, and each prime factor of d is primitive root modulo m, then (k, ℓ, m) is d-admissible.

Note: It is enough to prove the theorem in the case when d is a prime number.

Proof of the admissibility I.

If there exist multisets A, B, such that

- ▶ |A| = k, |B| = 2;
- ▶ for each c if the equation a + b = c has solution, then there are at least two.

Let $\mathcal{B} = \{r, r + s\}$ $(s \neq 0)$.

Then each elements of A + r has at least two representations So

$$|\mathcal{A}| = |\{a + r \mid a \in \mathcal{A}\}| = |\{a + r + s \mid a \in \mathcal{A}\}| =$$

= $|\{a + r + st \mid a \in \mathcal{A}\}| \ge p(m),$

since $\{a + r + st \mid a \in A\}$ is a not-trivial co-set of \mathbb{Z}_m , which contradicts to the condition k < p(m).

Proof of the admissibility III.

Let p = m, d be prime numbers. For a given multiset $C \subseteq \mathbb{Z}_p$ let

$$P_{\mathcal{C}}(x) = \sum_{c \in \mathcal{C}} x^{r_{\rho}(c)}.$$

(where $r_m(c)$ is the least non-negative residue of c modulo p.)

For a given $u \in \mathbb{Z}_p$ we have

$$P_{u+c}(x) \equiv x^u \cdot P_c(x) \mod x^p - 1 \text{ over } \mathbb{Z}_d.$$

In A + B each element is represented in d ways if and only if

$$P_{\mathcal{A}}(x) \cdot P_{\mathcal{B}}(x) \equiv P_{\mathcal{A} + \mathcal{B}}(x) = 0 \mod x^p - 1 \text{ over } \mathbb{Z}_d.$$

So there are *no* multisets A, B if the polinomial

$$\frac{x^{p}-1}{x-1}=x^{p-1}+\cdots+1$$

is irreducible over \mathbb{Z}_d , i.e. d is primitive root modulo p.

Sequences generated from Elliptic Curves

Let G be a generator of $\mathcal{E}(\mathbb{F}_p)$ (or at least an element with large order). Then

$$n \longmapsto x(nG) \in \mathbb{F}_p$$

or in general

$$n \longmapsto f(nG) \in \mathbb{F}_p$$

where $f \in \mathbb{F}_p(\mathcal{E})$.

In order to generate *binary* sequences we have to choose one of the bits of f(nG):

Chen:
$$n \mapsto \left(\frac{f(nG)}{p}\right)$$

Liu, Zhan, Wang: $n \mapsto \left\{ \begin{array}{ll} +1 & \text{if } f(nG) \in \{0,1,2\dots,\frac{p-1}{2}\} \\ -1 & \text{otherwise} \end{array} \right.$

Here $\left(\frac{\cdot}{p}\right)$ is the Legendre symbol modulo p.

An other construction

Construction

Let G be a generator of $\mathcal{E}(\mathbb{F}_p)$, and $f \in \mathbb{F}_p(\mathcal{E})$, and let us define $E_T = (e_1, \dots, e_T)$ by

$$e_n = \left\{ \begin{array}{ll} +1 & f(nG) \in \{0, 1, 2, \dots, \frac{p-1}{2}\} \\ -1 & \text{otherwise.} \end{array} \right.$$

An other construction

Construction

Let G be a generator of $\mathcal{E}(\mathbb{F}_p)$, and $f \in \mathbb{F}_p(\mathcal{E})$, and let us define $E_T = (e_1, \dots, e_T)$ by

$$e_n = \left\{ \begin{array}{ll} +1 & f(nG) \in \{0, 1, 2, \dots, \frac{p-1}{2}\} \\ -1 & \text{otherwise.} \end{array} \right.$$

Liu, Zhan, Wang:

- ▶ f is a "polynomial", i.e. the \mathcal{O} is the only pole of f;
- ▶ 1/f is a "polynomial", i.e. the \mathcal{O} is the only zero of f;

What can we say, when f is a general function?

Again let
$$\mathcal{E}: y^2 = x^3 - 2x$$
 over \mathbb{F}_{19} $|\mathcal{E}| = 20$, $G = (2,2)$ is a generator. Let $f(x,y) = 9x + \frac{1}{y}$.

$$e_n = \left\{ \begin{array}{ll} +1 & 9x(nG) + \frac{1}{x(nG)} \in \{0, 1, 2, \dots, 9\} \\ -1 & \text{otherwise.} \end{array} \right.$$

Again let $\mathcal{E}: y^2 = x^3 - 2x$ over \mathbb{F}_{19} $|\mathcal{E}| = 20$, G = (2,2) is a generator. Let $f(x,y) = 9x + \frac{1}{x}$.

$$e_n = \left\{ \begin{array}{ll} +1 & 9x(nG) + \frac{1}{x(nG)} \in \{0, 1, 2, \dots, 9\} \\ -1 & \text{otherwise.} \end{array} \right.$$

n	nG	f(nG)	e n	n	nG	f(nG)	e_n
1	(2,2)	9		11	(18 ,1)	9	
2	(7,14)	17		12	(16,6)	17	
3	(15,1)	16		13	(10,12)	16	
4	(11,6)	11		14	(5,18)	11	
5	(13,10)	6		15	(13,9)	6	
6	(5,1)	11		16	(11,13)	11	
7	(10,7)	16		17	(15,18)	16	
8	(16,13)	17		18	(7,5)	17	
9	(18,18)	9		19	(2,17)	9	
10	(0,0)	∞		20	O	∞	

Again let
$$\mathcal{E}: y^2 = x^3 - 2x$$
 over \mathbb{F}_{19} $|\mathcal{E}| = 20$, $G = (2,2)$ is a generator. Let $f(x,y) = 9x + \frac{1}{x}$.

$$e_n = \left\{ \begin{array}{ll} +1 & 9x(nG) + \frac{1}{x(nG)} \in \{0, 1, 2, \dots, 9\} \\ -1 & \text{otherwise.} \end{array} \right.$$

n	nG	f(nG)	e _n	n	nG	f(nG)	e n
1	(2,2)	9	+1	11	(18 ,1)	9	
2	(7,14)	17		12	(16,6)	17	
3	(15,1)	16		13	(10,12)	16	
4	(11,6)	11		14	(5,18)	11	
5	(13,10)	6		15	(13,9)	6	
6	(5,1)	11		16	(11,13)	11	
7	(10,7)	16		17	(15,18)	16	
8	(16,13)	17		18	(7,5)	17	
9	(18,18)	9		19	(2,17)	9	
10	(0,0)	∞		20	O	∞	

Again let
$$\mathcal{E}: y^2 = x^3 - 2x$$
 over \mathbb{F}_{19} $|\mathcal{E}| = 20$, $G = (2,2)$ is a generator. Let $f(x,y) = 9x + \frac{1}{x}$.

$$e_n = \left\{ \begin{array}{ll} +1 & 9x(nG) + \frac{1}{x(nG)} \in \{0, 1, 2, \dots, 9\} \\ -1 & \text{otherwise.} \end{array} \right.$$

n	nG	f(nG)	e _n	n	nG	f(nG)	e _n
1	(2,2)	9	+1	11	(18 ,1)	9	
2	(7,14)	17	-1	12	(16,6)	17	
3	(15,1)	16		13	(10,12)	16	
4	(11,6)	11		14	(5,18)	11	
5	(13,10)	6		15	(13,9)	6	
6	(5,1)	11		16	(11,13)	11	
7	(10,7)	16		17	(15,18)	16	
8	(16,13)	17		18	(7,5)	17	
9	(18,18)	9		19	(2,17)	9	
10	(0,0)	∞		20	0	∞	

Again let $\mathcal{E}: y^2 = x^3 - 2x$ over \mathbb{F}_{19} $|\mathcal{E}| = 20$, G = (2,2) is a generator. Let $f(x,y) = 9x + \frac{1}{x}$.

$$e_n = \left\{ \begin{array}{ll} +1 & 9x(nG) + \frac{1}{x(nG)} \in \{0, 1, 2, \dots, 9\} \\ -1 & \text{otherwise.} \end{array} \right.$$

n	nG	f(nG)	e n	n	nG	f(nG)	e _n
1	(2,2)	9	+1	11	(18,1)	9	
2	(7,14)	17	-1	12	(16,6)	17	
3	(15,1)	16	-1	13	(10,12)	16	
4	(11,6)	11		14	(5,18)	11	
5	(13,10)	6		15	(13,9)	6	
6	(5,1)	11		16	(11,13)	11	
7	(10,7)	16		17	(15,18)	16	
8	(16,13)	17		18	(7,5)	17	
9	(18,18)	9		19	(2,17)	9	
10	(0, 0)	∞		20	0	∞	

Again let $\mathcal{E}: y^2 = x^3 - 2x$ over \mathbb{F}_{19} $|\mathcal{E}| = 20$, G = (2,2) is a generator. Let $f(x,y) = 9x + \frac{1}{x}$.

$$e_n = \left\{ \begin{array}{ll} +1 & 9x(nG) + \frac{1}{x(nG)} \in \{0, 1, 2, \dots, 9\} \\ -1 & \text{otherwise.} \end{array} \right.$$

n	nG	f(nG)	e _n	n	nG	f(nG)	e n
1	(2,2)	9	+1	11	(18 ,1)	9	+1
2	(7,14)	17	-1	12	(16, 61)	17	-1
3	(15,1)	16	-1	13	(10,12)	16	-1
4	(11,6)	11	-1	14	(5,18)	11	-1
5	(13,10)	6	+1	15	(13,9)	6	+1
6	(5 ,1)	11	-1	16	(11,13)	11	-1
7	(10,7)	16	-1	17	(15,18)	16	-1
8	(16,13)	17	-1	18	(7,5)	17	-1
9	(18,18)	9	+1	19	(2,17)	9	+1
10	(0,0)	∞	-1	20	O	∞	-1

Again let
$$\mathcal{E}: y^2 = x^3 - 2x$$
 over \mathbb{F}_{19} $|\mathcal{E}| = 20$, $G = (2,2)$ is a generator. Let $f(x,y) = 9x + \frac{1}{x}$.

$$e_n = \left\{ \begin{array}{ll} +1 & 9x(nG) + \frac{1}{x(nG)} \in \{0, 1, 2, \dots, 9\} \\ -1 & \text{otherwise.} \end{array} \right.$$

Why this sequence is *not* random?

Again let
$$\mathcal{E}: y^2 = x^3 - 2x$$
 over \mathbb{F}_{19} $|\mathcal{E}| = 20, \ G = (2,2)$ is a generator. Let $f(x,y) = 9x + \frac{1}{x}$.

$$e_n = \left\{ \begin{array}{ll} +1 & 9x(nG) + \frac{1}{x(nG)} \in \{0, 1, 2, \dots, 9\} \\ -1 & \text{otherwise.} \end{array} \right.$$

Why this sequence is *not* random? The correlation measure $C_2(E_{20})$ is large:

$$e_n \cdot e_{n+10} = +1$$
 for $n = 1, 2, \dots, 10$.

Again let
$$\mathcal{E}: y^2 = x^3 - 2x$$
 over \mathbb{F}_{19} $|\mathcal{E}| = 20$, $G = (2,2)$ is a generator. Let $f(x,y) = 9x + \frac{1}{x}$.

$$e_n = \left\{ \begin{array}{ll} +1 & 9x(nG) + \frac{1}{x(nG)} \in \{0, 1, 2, \dots, 9\} \\ -1 & \text{otherwise.} \end{array} \right.$$

Why this sequence is *not* random? The correlation measure $C_2(E_{20})$ is large:

$$e_n \cdot e_{n+10} = +1$$
 for $n = 1, 2, \dots, 10$.

By using additive character sums, it can be shown that the correlation measure of order ℓ is small, if none of the functions

$$F(P) = h_1 \cdot f(P + d_1 G) + \dots + h_\ell \cdot f(P + d_\ell G) \quad (h_1, \dots, h_\ell) \in \mathbb{F}_p^\ell \setminus (0, \dots, 0)$$
 are constant.

Again let
$$\mathcal{E}: y^2 = x^3 - 2x$$
 over \mathbb{F}_{19} $|\mathcal{E}| = 20$, $G = (2,2)$ is a generator. Let $f(x,y) = 9x + \frac{1}{x}$.

$$e_n = \left\{ \begin{array}{ll} +1 & 9x(nG) + \frac{1}{x(nG)} \in \{0, 1, 2, \dots, 9\} \\ -1 & \text{otherwise.} \end{array} \right.$$

Why this sequence is *not* random? The correlation measure $C_2(E_{20})$ is large:

$$e_n \cdot e_{n+10} = +1$$
 for $n = 1, 2, \dots, 10$.

By using additive character sums, it can be shown that the correlation measure of order ℓ is small, if none of the functions

$$F(P)=h_1\cdot f(P+d_1G)+\cdots+h_\ell\cdot f(P+d_\ell G)\quad (h_1,\ldots,h_\ell)\in \mathbb{F}_p^\ell\setminus (0,\ldots,0)$$
 are constant. But

$$f(P) - f(P + 10G) = \left(9x + \frac{1}{x}\right) - \left(9\left(\left(\frac{y}{x}\right)^2 - x\right) + \frac{1}{\left(\frac{y}{x}\right)^2 - x}\right)$$
$$= \left(9x + \frac{1}{x}\right) - \left(9 \cdot \frac{-2}{x} + \frac{-1}{2}x\right) = 0$$

An other construction

Construction (Mérai)

Let G be a generator of $\mathcal{E}(\mathbb{F}_p)$, and $f \in \mathbb{F}_p(\mathcal{E})$, and let us define $E_T = (e_1, \dots, e_T)$ by

$$e_n = \left\{ \begin{array}{ll} +1 & \textit{f(nG)} \in \{0, 1, 2, \dots, \frac{p-1}{2}\} \\ -1 & \text{otherwise}. \end{array} \right.$$

An other construction

Construction (Mérai)

Let G be a generator of $\mathcal{E}(\mathbb{F}_p)$, and $f \in \mathbb{F}_p(\mathcal{E})$, and let us define $E_T = (e_1, \dots, e_T)$ by

$$e_n = \left\{ \begin{array}{ll} +1 & f(nG) \in \{0, 1, 2, \dots, \frac{p-1}{2}\} \\ -1 & \text{otherwise.} \end{array} \right.$$

For general rational functions:

Theorem

If the order of G is T then

$$W(E_T) \ll |\operatorname{Supp}(f)| p^{1/2} \log p \log T$$
.

If p(T) is the least prime divisor of p and

▶
$$|\operatorname{Supp}(f)| < p(T)$$
 and $\ell = 2$, or

$$\qquad (4|\operatorname{Supp}(f)|)^{\ell} < p(T),$$

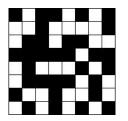
then

$$C_{\ell}(E_T) \ll \ell |\operatorname{Supp}(f)| p^{1/2} (\log p)^{\ell+1} \log T.$$

Extension of constructions to several dimensions

The extension of binary sequences in *several dimensions*, called *binary lattice*:

$$\eta: \{1, 2, \dots, N\}^n \to \{+1, -1\}$$



We can define the analogue of the measures of pseudorandomness in several dimensions: $Q_{\ell}(\eta)$.

Application:

encryption of several dimensions map or picture via the analogue of the Vernam cipher.

Let $q=p^n$ be a prime power, $u_1,\ldots,u_n\in\mathbb{F}_q$ is a basis over \mathbb{F}_p . Let $f\in\mathbb{F}_q[x]$

Let $q = p^n$ be a prime power, $u_1, \ldots, u_n \in \mathbb{F}_q$ is a basis over \mathbb{F}_p . Let $f \in \mathbb{F}_q[x]$

► Huber, Mauduit, Sárközy:

$$\eta(x_1,\ldots,x_n)=\chi_2\left(f(x_1u_1+\cdots+x_nu_n)\right),$$

where χ_2 is the quadratic character over \mathbb{F}_q .

Let $q = p^n$ be a prime power, $u_1, \ldots, u_n \in \mathbb{F}_q$ is a basis over \mathbb{F}_p . Let $f \in \mathbb{F}_q[x]$

► Huber, Mauduit, Sárközy:

$$\eta(x_1,\ldots,x_n)=\chi_2\left(f(x_1u_1+\cdots+x_nu_n)\right),$$

where χ_2 is the quadratic character over \mathbb{F}_q .

Mérai:

$$\eta(x_1,\ldots,x_n)=+1, \text{ if } \arg\Big(\chi\big(f(x_1u_1+\cdots+x_nu_n)\big)\Big)\in[0,\pi),$$

where χ is a general multiplicative character.

Let $q = p^n$ be a prime power, $u_1, \ldots, u_n \in \mathbb{F}_q$ is a basis over \mathbb{F}_p . Let $f \in \mathbb{F}_q[x]$

► Huber, Mauduit, Sárközy:

$$\eta(x_1,\ldots,x_n)=\chi_2\left(f(x_1u_1+\cdots+x_nu_n)\right),$$

where χ_2 is the quadratic character over \mathbb{F}_q .

Mérai:

$$\eta(x_1,\ldots,x_n)=+1, \text{ if } \arg\Big(\chi\big(f(x_1u_1+\cdots+x_nu_n)\big)\Big)\in[0,\pi),$$

where χ is a general multiplicative character.

Mauduit, Sárközy:

$$\eta(x_1,...,x_n)=f^{-1}(x_1u_1+\cdots+x_nu_n)\in B,$$

where x^{-1} is the multiplicative inverse of x, $B \subset \mathbb{F}_q$.

Definition

The points $P_1, \ldots, P_n \in \mathcal{E}$ are weakly independents if

$$\lambda_1 P_1 + \cdots + \lambda_n P_n = \mathcal{O} \Rightarrow \lambda_i P_i = \mathcal{O}$$
 for each $i = 1, \dots, n$.

Definition

The points $P_1, \ldots, P_n \in \mathcal{E}$ are weakly independents if

$$\lambda_1 P_1 + \cdots + \lambda_n P_n = \mathcal{O} \Rightarrow \lambda_i P_i = \mathcal{O}$$
 for each $i = 1, \dots, n$.

Construction (Mérai)

Let $P_1,\ldots,P_n\in\mathcal{E}$ are weakly independent element, let us define η by

$$\eta(x_1,\ldots,x_n) = \begin{cases} \left(\frac{f(x_1P_1+\cdots+x_nP_n)}{p}\right) & \text{if } x_1P_1+\cdots+x_nP_n \neq \mathcal{O} \\ -1 & \text{otherwise.} \end{cases}$$

Definition

The points $P_1, \ldots, P_n \in \mathcal{E}$ are weakly independents if

$$\lambda_1 P_1 + \cdots + \lambda_n P_n = \mathcal{O} \Rightarrow \lambda_i P_i = \mathcal{O}$$
 for each $i = 1, \dots, n$.

Construction (Mérai)

Let $P_1, \ldots, P_n \in \mathcal{E}$ are weakly independent element, let us define η by

$$\eta(x_1,\ldots,x_n) = \begin{cases} \left(\frac{f(x_1P_1+\cdots+x_nP_n)}{p}\right) & \text{if } x_1P_1+\cdots+x_nP_n \neq \mathcal{O} \\ -1 & \text{otherwise.} \end{cases}$$

Example

If \mathcal{E} is *not* cyclic, and $P, Q \in \mathcal{E}$ are the echelonized generators, then they are weakly independents.

Definition

The points $P_1, \ldots, P_n \in \mathcal{E}$ are weakly independents if

$$\lambda_1 P_1 + \cdots + \lambda_n P_n = \mathcal{O} \Rightarrow \lambda_i P_i = \mathcal{O}$$
 for each $i = 1, \dots, n$.

Construction (Mérai)

Let $P_1, \ldots, P_n \in \mathcal{E}$ are weakly independent element, let us define η by

$$\eta(x_1,\ldots,x_n) = \begin{cases} \left(\frac{f(x_1P_1+\cdots+x_nP_n)}{p}\right) & \text{if } x_1P_1+\cdots+x_nP_n \neq \mathcal{O} \\ -1 & \text{otherwise.} \end{cases}$$

Example

- If \mathcal{E} is *not* cyclic, and $P, Q \in \mathcal{E}$ are the echelonized generators, then they are weakly independents.
- If $P \in \mathcal{E}$, $|P| = \alpha_1 \dots \alpha_n$ such that the numbers $\alpha_1 \dots \alpha_n$ are pairwise co-prime, then the elements

$$P_1 = \frac{|P|}{\alpha_1}P, \ldots, P_n = \frac{|P|}{\alpha_n}P$$

are weakly independents.

$$\eta(x_1,\ldots,x_n) = \left\{ \begin{array}{ll} \left(\frac{f(x_1P_1+\cdots+x_nP_n)}{p}\right) & \text{if } x_1P_1+\cdots+x_nP_n \neq \mathcal{O} \\ -1 & \text{otherwise}. \end{array} \right.$$

Theorem

Let $\mathcal H$ be the subgroup generated by P_1, \dots, P_n , $p(\mathcal H)$ is the least prime divisor of $|\mathcal H|$. If

- ▶ $|\operatorname{Supp}(f)| < P(\mathcal{H})$ and $\ell = 2$; or
- $\blacktriangleright 4^{n(|\operatorname{Supp}(f)|+\ell)} < p(\mathcal{H}),$

then

$$Q_{\ell} \ll_{n,\ell,f} p^{1/2+\varepsilon}$$
.

$$\eta(x_1,\ldots,x_n) = \left\{ \begin{array}{ll} \left(\frac{f(x_1P_1+\cdots+x_nP_n)}{p}\right) & \text{if } x_1P_1+\cdots+x_nP_n \neq \mathcal{O} \\ -1 & \text{otherwise}. \end{array} \right.$$

Theorem

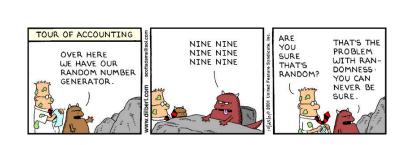
Let \mathcal{H} be the subgroup generated by P_1, \ldots, P_n , $p(\mathcal{H})$ is the least prime divisor of $|\mathcal{H}|$. If

- ▶ $|\operatorname{Supp}(f)| < P(\mathcal{H})$ and $\ell = 2$; or
- ▶ $4^{n(|\operatorname{Supp}(f)|+\ell)} < p(\mathcal{H}),$

then

$$Q_{\ell} \ll_{n,\ell,f} p^{1/2+\varepsilon}$$
.

- Good constructions can be defined with general multiplicative characters.
- ► The proof based on the notion of admissibility over general (not cyclic) Abelian group and character sum estimates over elliptic curves.



Thank You!

