On second-order nonlinearities of some \mathcal{D}_0 type bent functions

Sugata Gangopadhyay (Joint work with Brajesh Kumar Singh)

Department of Mathematics, Indian Institute of Technology Roorkee gsugata@gmail.com

Central European Conference on Cryptology Bedlewo, Poland June 10–12, 2010

Boolean functions

▶ A Boolean function *f* on *n* variables is a mapping :

$$f: \{0,1\}^n \to \{0,1\}.$$

Boolean function can be represented by a truth table.

	^4	1 73	1 12	^1	' '	
	0	0	0	0	0	
	0	0	0	1	1	
	0	0	1	0	1	
	0	0	1	1	1	
	0	1	0	0	1	
	0	1	0	1	1	
(0.4)4 (0.4)	0	1	1	0	0	
$f: \{0,1\}^4 \to \{0,1\}$	0	1	1	1	0	
() ()	1	0	0	0	0	
	1	0	0	1	0	
	1	0	1	0	0	
	1	0	1	1	0	
	1	1	0	0	0	
	1	1	0	1	0	
	1	1	1	0	0	
	1	1	1	1	0	

- Also represented by the 2^n -length string $[f(0), f(1), \dots, f(2^n 1)]$
- ▶ The number of all *n*-variable Boolean functions is 2^{2^n} .

Boolean functions

- ▶ Let \mathbb{F}_2 be the prime field of characteristic 2.
- ▶ A Boolean function f is a function from \mathbb{F}_2^n to \mathbb{F}_2 .
- ▶ Alternatively Boolean functions can be thought of as functions from \mathbb{F}_{2^n} to \mathbb{F}_2 .
- Let \mathcal{B}_n be the set of all Boolean functions on n variables.

Algebraic Normal Form (ANF)

▶ The algebraic normal form (ANF) of $f \in \mathcal{B}_n$ is

$$f(x_1, x_2, ..., x_n) = \sum_{a=(a_1,...,a_n)\in\mathbb{F}_2^n} \mu_a \left(\prod_{i=1}^n x_i^{a_i}\right),$$

where $\mu_a \in \mathbb{F}_2$.

► The algebraic degree of f, deg $(f) := \max\{wt(a) : \mu_a \neq 0, a \in \mathbb{F}_2^n\}$.

Nonlinearity

- ▶ $dist : \mathcal{B}_n \times \mathcal{B}_n \longrightarrow \mathbb{Z}$ defined by $dist(f,g) = |\{x \in \mathbb{F}_2^n : f(x) \neq g(x)\}|$, for all $f,g \in \mathcal{B}_n$, is said to be the Hamming distance between f and g.
- Nonlinearity of $f \in \mathcal{B}_n$ is defined as $nI(f) = \min_{l \in \mathcal{A}_n} \{ dist(f, l) \}$ where \mathcal{A}_n is the set of affine functions on n variables.
- Alternatively the nonlinearity of f is its distance from RM(1, n), the Reed-Muller code of order 1 and size 2^n .

Nonlinearity and Walsh Transformation

▶ The Walsh transform $f \in \mathcal{B}_n$ at $\lambda \in \mathbb{F}_2^n$ is defined as follows:

$$W_f(\lambda) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + \lambda \cdot x}.$$

>

$$nl(f) = 2^{n-1} - \frac{1}{2} \max_{\lambda \in \mathbb{F}_{2^n}} |W_f(\lambda)|.$$

It is to be noted that the Walsh spectrum of $f \in \mathcal{B}_n$ can be computed in time $O(n2^n)$ and hence the nonlinearity.

Upper bound of nonlinearity

Parseval's identity

$$\sum_{\lambda \in \mathbb{F}_{2^n}} W_f(\lambda)^2 = 2^{2n}$$

▶ $|W_f(\lambda)| \ge 2^{n/2}$, which implies $nI(f) \le 2^{n-1} - 2^{\frac{n}{2}-1}$.

Bent functions: functions with maximum nonlinearity

- ▶ A Boolean function $f \in \mathcal{B}_n$, where n is even is said to be bent if and only if $|W_f(\lambda)| = 2^{n/2}$ for all $\lambda \in \mathbb{F}_2^n$.
- From this it follows that bent functions have maximum nonlinearity namely $2^{n-1} 2^{\frac{n}{2}-1}$ for even n.

Nonlinearity to nonlinearity profile

- Suppose f is a Boolean function on n variables. For every non-negative integer $r \le n$, we denote by $nl_r(f)$ the rth-order nonlinearity of f, which is the minimum Hamming distance of f and all functions of algebraic degree at most f.
- ▶ Alternatively the rth-order nonlinearity of an n variable Boolean function f is its distance from RM(r, n), the r order Reed-Muller code of size 2^n .
- ▶ The sequence of values $nl_r(f)$, for r ranging from 1 to n-1, is said to be the nonlinearity profile of f.
- Unlike the first-order nonlinearity there is no fast algorithm to determine second or higher-order nonlinearities.

Lower bounds on nonlinearity profile

- ► (Carlet 2008) C. Carlet, Recursive lower bounds on the nonlinearity profile of Boolean functions and their applications, IEEE Trans. Inform. Theory 54 (3) (2008) 1262-1272.
- (Fouquet and Tavernier 2008) R. Fourquet and C. Tavernier, An improved list decoding algorithm for the second order Reed-Muller codes and its applications, Des. Codes Cryptotogr. 49 (2008) 323-340.

Derivatives of Boolean function

▶ The derivative of $f \in \mathcal{B}_n$ with respect to $a \in \mathbb{F}_2^n$ is defined by

$$D_a f(x) := f(x) + f(x + a)$$

▶ The *r*th-order derivative of *f* with respect to *V* is defined by

$$D_V f(x) := D_{a_1} \dots D_{a_r} f(x)$$

Where V be an r-dimensional subspace of \mathbb{F}_2^n generated by a_1, \ldots, a_r .

Proposition 2 (Carlet 2008)

► Let *f* be *n* variable Boolean function and *r* be a positive integer smaller than *n*, then we have

$$nl_r(f) \geq \frac{1}{2} \max_{a \in \mathbb{F}_2^n} nl_{r-1}(D_a f)$$

▶ In particular, for r = 2

$$nl_2(f) \geq \frac{1}{2} \max_{a \in \mathbb{F}_2^n} nl(D_a f).$$

Proposition 3 and Corollary 2 (Carlet 2008)

- Let f be any n variable Boolean function and r be a positive integer smaller than n, Then we have $nI_r(f) \geq 2^{n-1} \frac{1}{2}\sqrt{2^{2n} 2\sum_{a \in \mathbb{F}_2^n} nI_{r-1}(D_a f)}$.
- Let f be any n variable function and r a positive integer smaller than n. Assume that, for some nonnegative integers M and m, we have $nl_{r-1}(D_a f) \ge 2^{n-1} M2^m$ for every nonzero $a \in \mathbb{F}_2^n$. Then

$$nI_r(f) \ge 2^{n-1} - \frac{1}{2}\sqrt{(2^n - 1)M2^{m+1} + 2^n}$$

$$\approx 2^{n-1} - \sqrt{M}2^{\frac{n+m-1}{2}}$$
(1)

Quadratic Boolean functions

- ▶ Suppose $g \in \mathcal{B}_n$ is a quadratic function. The bilinear form associated with g is defined by B(x,y) = g(0) + g(x) + g(y) + g(x+y).
- ▶ The kernel of B(x, y) is the subspace of \mathbb{F}_2^n defined by

$$\mathcal{E}_g = \{x \in \mathbb{F}_2^n : B(x,y) = 0 \text{ for all } y \in \mathbb{F}_2^n\}.$$

Quadratic Boolean functions

▶ Suppose $g \in \mathcal{B}_n$ is a quadratic function. The kernel of B(x,y)

$$\mathcal{E}_g = \{ a \in \mathbb{F}_2^n : D_a g = \text{ constant } \}.$$

A. Canteaut, P. Charpin and G. M. Kyureghyan, A new class of monomial bent functions, Finite Fields and their Applications 14 (2008) 221-241.

Walsh spectrum of quadratic Boolean functions

If $g: \mathbb{F}_2^n \to \mathbb{F}_2$ is a quadratic boolean function and B(x,y) is the quadratic form associated to it, then the Walsh Spectrum of g depends only on the dimension, k, of the kernel, \mathcal{E}_g , of B(x,y). The weight distribution of the Walsh spectrum of g is:

$W_g(\mu)$	number of μ
0 $2^{(n+k)/2}$ $-2^{(n+k)/2}$	$2^{n} - 2^{n-k}$ $2^{n-k-1} + (-1)^{f(0)} 2^{(n-k-2)/2}$ $2^{n-k-1} - (-1)^{f(0)} 2^{(n-k-2)/2}$

► F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting codes, North-Holland, Amsterdam, 1977.

Lower bounds of second-order nonlinearities of cubic Boolean functions

- ▶ If f is a cubic Boolean function the $D_a f$ is at most quadratic.
- ▶ It possible to get good estimates of the nonlinearities of $D_a f$ for all $a \in \mathbb{F}_2^n$ to obtain estimates of the lower bounds of second-order nonlinearities of cubic Boolean functions.
- This technique is used in several recent papers for cubic bent functions.

Lower bounds of second-order nonlinearities of cubic Boolean functions

▶ If $f(x, y) = Tr_1^p(xy^{2^i+1})$, where $x, y \in \mathbb{F}_{2^p}$, n = 2p, $n \ge 6$ and i is an integer such that $1 \le i < p$, $gcd(2^p - 1, 2^i + 1) = 1$ and gcd(i, p) = e, then

$$nl_2(f) \geq 2^{n-1} - \frac{1}{2} \sqrt{2^{(\frac{3n}{2} + e)} - 2^{(\frac{3n}{4} + \frac{e}{2})} + 2^n (2^{(\frac{n}{4} + \frac{e}{2})} - 2^e + 1)}.$$

S. Gangopadhyay, S. Sarkar and R. Telang, On the lower bounds of the second order nonlinearities of some Boolean functions, Information Sciences 180 (2010) 266-273.

Lower bounds of second-order nonlinearities of cubic Boolean functions

n = 2p	6	10	12
i	1,2	1, 2, 3, 4	2,4
$e = \gcd(i, p)$	1	1	2
Lower bounds in (Gangopadhyay et al.)	15	378	1524
Hamming distances in (Fourquet et al.)	18	400	1760

Construction \mathcal{D}_0 type bent functions

- Let n = 2p, π is a permutation on \mathbb{F}_2^p . $f(x, y) = \pi(y) \cdot x$ is a Maiorana-McFarland type bent.
- ▶ Following is the \mathcal{D}_0 type bent constructed by Carlet:

$$h(x,y) = x \cdot \pi(y) + \prod_{j=1}^{p} (x_j + 1)$$

where
$$x = (x_1, \dots, x_n)$$

► C. Carlet, Two new classes of bent functions, in Proc. EUROCRYPT '93, LNCS vol. 765, Springer, 1994, pp. 77-101.

Walsh transforms of derivatives of \mathcal{D}_0 type bent functions

Let
$$h(x,y)=f(x,y)+g(x)$$
, where $n=2p,\,x,y\in\mathbb{F}_2^p$, $f(x,y)=x\cdot\pi(y),\,g(x)=\prod_{i=1}^p(x_i+1)$ and π is a permutation on \mathbb{F}_2^p then

▶ The Walsh transform of $D_{(a,b)}h$ at $(\mu,\eta) \in \mathbb{F}_2^p \times \mathbb{F}_2^p$ is

$$W_{D_{(a,b)}h}(\mu,\eta) = W_{D_{(a,b)}f}(\mu,\eta) - 2[(-1)^{\mu \cdot a} + (-1)^{\eta \cdot b}]W_{a \cdot \pi}(\eta)$$

 $\qquad | W_{D_{(a,b)}h}(\mu,\eta) | \leq | W_{D_{(a,b)}f}(\mu,\eta) | + 4 | W_{a\cdot\pi}(\eta) |.$

Proof outline

Let
$$h(x, y) = f(x, y) + g(x)$$
, $g(x) = \prod_{i=1}^{p} (x_i + 1)$ and $(a, b) \in \mathbb{F}_2^p \times \mathbb{F}_2^p$, with $a \neq 0$. Then

$$g(x)+g(x+a)=\left\{egin{array}{ll} 1, & ext{if } (x,y)\in (\{0\} imes \mathbb{F}_2^p) igcup (\{a\} imes \mathbb{F}_2^p), \\ 0, & ext{otherwise} \ . \end{array}
ight.$$

The Walsh transform of $D_{(a,b)}h$ at $(\mu,\eta) \in \mathbb{F}_2^{\rho} \times \mathbb{F}_2^{\rho}$ is

$$\begin{split} W_{D_{(a,b)}h}(\mu,\eta) &= \sum_{(x,y) \in \mathbb{F}_2^{\rho} \times \mathbb{F}_2^{\rho}} (-1)^{f(x+a,y+b)+f(x,y)+g(x+a)+g(x)+\mu \cdot x + \eta \cdot y} \\ &= \sum_{(x,y) \in \mathbb{F}_2^{\rho} \times \mathbb{F}_2^{\rho}} (-1)^{f(x+a,y+b)+f(x,y)+\mu \cdot x + \eta \cdot y} \\ &- 2 \sum_{(x,y) \in \{0,a\} \times \mathbb{F}_2^{\rho}} (-1)^{f(x+a,y+b)+f(x,y)+\mu \cdot x + \eta \cdot y} \end{split}$$

Proof outline

$$= W_{D_{(a,b)}f}(\mu,\eta) - 2[\sum_{y \in \mathbb{F}_2^\rho} (-1)^{f(0,y+b)+f(a,y)+\mu \cdot a + \eta \cdot y} \\ + \sum_{y \in \mathbb{F}_2^\rho} (-1)^{f(a,y+b)+f(0,y)+\eta \cdot y}] \\ = W_{D_{(a,b)}f}(\mu,\eta) - 2[(-1)^{\mu \cdot a} \sum_{y \in \mathbb{F}_2^\rho} (-1)^{a \cdot \pi(y)+\eta \cdot y} \\ + (-1)^{\eta \cdot b} \sum_{y \in \mathbb{F}_2^\rho} (-1)^{a \cdot \pi(y+b)+\eta \cdot (y+b)}] \\ = W_{D_{(a,b)}f}(\mu,\eta) - 2[(-1)^{\mu \cdot a} + (-1)^{\eta \cdot b}] W_{a \cdot \pi}(\eta)$$
 Thus, $|W_{D_{(a,b)}h}(\mu,\eta)| \le |W_{D_{(a,b)}f}(\mu,\eta)| + 4 |W_{a \cdot \pi}(\eta)|$

Main Theorem

Let
$$h(x, y) = tr_1^p(xy^{2^i+1}) + \prod_{i=1}^p (x_i + 1)$$
, where $n = 2p$, $x, y \in \mathbb{F}_2^p$, i is integer such that $1 \le i \le p$, $gcd(2^i + 1, 2^p - 1) = 1$, and $gcd(i, p) = e$, then

$$\textit{nl}_2(\textit{h}) \geq 2^{2p-1} - \frac{1}{2} \sqrt{2^{3p+e} + 2^{2p}(1-2^e) + 5(2^{\frac{5p+e}{2}} - 2^{\frac{3p+e}{2}})}.$$

Proof outline

Let $h(x, y) = tr_1^p(xy^{2^{i+1}}) + \prod_{i=1}^p (x_i + 1)$, where n = 2p, $x, y \in \mathbb{F}_2^p$, i is integer such that $1 \le i \le p$, $\gcd(2^i + 1, 2^p - 1) = 1$, and $\gcd(i, p) = e$, then nonlinearity of $D_{(a,b)}h$ is

$$nl(D_{(a,b)}h) \geq \left\{ egin{array}{ll} 2^{2p-1} - 2^{p+e-1}, & ext{if } a = 0 ext{ and } b
eq 0, \ 2^{2p-1} - 2^{p+e-1} - 2^{rac{p+e+2}{2}}, & ext{if } a
eq 0 ext{ and } b
eq 0, \ 2^{2p-1} - 2^{rac{3p+e-2}{2}} - 2^{rac{p+e+2}{2}}, & ext{if } a
eq 0 ext{ and } b
eq 0. \end{array}
ight.$$

Proof outline

$$\begin{split} &\sum_{(a,b)\in\mathbb{F}_{2^p}\times\mathbb{F}_{2^p}} nl(D_{(a,b)}h) \\ &\geq (2^p-1)(2^{2p-1}-2^{p+e-1})+(2^p-1)(2^{2p-1}-2^{\frac{3p+e-2}{2}}-2^{\frac{p+e+2}{2}}) \\ &+(2^p-1)(2^p-1)(2^{2p-1}-2^{p+e-1}-2^{\frac{p+e-2}{2}}) \\ &= 2^{4p-1}-2^{3p+e-1}-2^{2p-1}(1-2^e)-5(2^{\frac{5p+e-2}{2}}-2^{\frac{3p+e-2}{2}}) \end{split}$$

$$nl_2(h) \geq 2^{n-1} - \frac{1}{2} \sqrt{2^{2n} - 2 \sum_{(a,b) \in \mathbb{F}_2^p \times \mathbb{F}_2^p} nl(D_{(a,b)}h)}.$$

Comparisons

n = 2p	6	10	12
i	1,2	1, 2, 3, 4	2,4
$e = \gcd(i, p)$	1	1	2
Lower bounds in (Gangopadhyay et al.)	15	378	1524
Hamming distances in (Fourquet et al.)	18	400	1760
Lower bounds of D ₀ type considered	10	351	1466

Another class of functions

▶ Let $h(x,y) = tr_1^p(x(y^{2^{m+1}+1} + y^3 + y)) + \prod_{i=1}^p (x_i + 1)$, where $n = 2p, x, y \in \mathbb{F}_2^p$, m is integer such that p = 2m + 1, then

$$\textit{nl}_2(\textit{h}) \geq 2^{2p-1} - \frac{1}{2} \sqrt{2^{3p+2} - 3 \cdot 2^{2p} + 5 \cdot (2^{\frac{5p+3}{2}} - 2^{\frac{3p+3}{2}})}.$$

S. Sarkar and S. Gangopadhyay, On the Second Order Nonlinearity of a Cubic Maiorana-McFarland Bent Function, Finite Fields and their Applications, Fq 9, Dublin, Ireland, July 13-17, 2009.

Conclusions

- We identify a class of bent functions, with maximum algebraic degree, having good second order nonlinearity.
- Finding out bounds of the nonlinearity profile of these functions is an open question.

Acknowledgements

- The authors thank Projet SECRET, INRIA Rocquencourt for travel support to present this paper.
- Brajesh Kumar Singh's research is supported by Council for Scientific and Industrial Research India.

THANK YOU QUESTIONS PLEASE