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Boolean functions
I A Boolean function f on n variables is a mapping :

f : {0,1}n → {0,1}.

I Boolean function can be represented by a truth table.

f : {0,1}4 → {0,1}

x4 x3 x2 x1 f
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

I Also represented by the 2n-length string
[f (0), f (1), . . . , f (2n − 1)]

I The number of all n-variable Boolean functions is 22n
.



Boolean functions

I Let F2 be the prime field of characteristic 2.
I A Boolean function f is a function from Fn

2 to F2.
I Alternatively Boolean functions can be thought of as

functions from F2n to F2.
I Let Bn be the set of all Boolean functions on n variables.



Algebraic Normal Form (ANF)

I The algebraic normal form (ANF) of f ∈ Bn is

f (x1, x2, . . . , xn) =
∑

a=(a1,...,an)∈Fn
2

µa

(
n∏

i=1

xai
i

)
,

where µa ∈ F2.

I The algebraic degree of f ,
deg(f ) := max{wt(a) : µa 6= 0,a ∈ Fn

2}.



Nonlinearity

I dist : Bn × Bn −→ Z defined by
dist(f ,g) = |{x ∈ Fn

2 : f (x) 6= g(x)}|, for all f ,g ∈ Bn, is said
to be the Hamming distance between f and g.

I Nonlinearity of f ∈ Bn is defined as
nl(f ) = minl∈An{dist(f , l)} where An is the set of affine
functions on n variables.

I Alternatively the nonlinearity of f is its distance from
RM(1,n), the Reed-Muller code of order 1 and size 2n.



Nonlinearity and Walsh Transformation

I The Walsh transform f ∈ Bn at λ ∈ Fn
2 is defined as follows:

Wf (λ) =
∑
x∈Fn

2

(−1)f (x)+λ·x .

I

nl(f ) = 2n−1 − 1
2

max
λ∈F2n

|Wf (λ)|.

It is to be noted that the Walsh spectrum of f ∈ Bn can be
computed in time O(n2n) and hence the nonlinearity.



Upper bound of nonlinearity

I Parseval’s identity ∑
λ∈F2n

Wf (λ)2 = 22n

I |Wf (λ)| ≥ 2n/2, which implies nl(f ) ≤ 2n−1 − 2
n
2−1.



Bent functions: functions with maximum nonlinearity

I A Boolean function f ∈ Bn, where n is even is said to be
bent if and only if |Wf (λ)| = 2n/2 for all λ ∈ Fn

2.
I From this it follows that bent functions have maximum

nonlinearity namely 2n−1 − 2
n
2−1 for even n.



Nonlinearity to nonlinearity profile

I Suppose f is a Boolean function on n variables. For every
non-negative integer r ≤ n, we denote by nlr (f ) the
r th-order nonlinearity of f , which is the minimum Hamming
distance of f and all functions of algebraic degree at most
r .

I Alternatively the r th-order nonlinearity of an n variable
Boolean function f is its distance from RM(r ,n), the r order
Reed-Muller code of size 2n.

I The sequence of values nlr (f ), for r ranging from 1 to
n − 1, is said to be the nonlinearity profile of f .

I Unlike the first-order nonlinearity there is no fast algorithm
to determine second or higher-order nonlinearities.



Lower bounds on nonlinearity profile

I (Carlet 2008) C. Carlet, Recursive lower bounds on the
nonlinearity profile of Boolean functions and their
applications, IEEE Trans. Inform. Theory 54 (3) (2008)
1262-1272.

I (Fouquet and Tavernier 2008) R. Fourquet and C.
Tavernier, An improved list decoding algorithm for the
second order Reed-Muller codes and its applications, Des.
Codes Cryptotogr. 49 (2008) 323-340.



Derivatives of Boolean function

I The derivative of f ∈ Bn with respect to a ∈ Fn
2 is defined by

Daf (x) := f (x) + f (x + a)

I The r th-order derivative of f with respect to V is defined by

DV f (x) := Da1 . . .Dar f (x)

Where V be an r -dimensional subspace of Fn
2 generated

by a1, . . . ,ar .



Proposition 2 (Carlet 2008)

I Let f be n variable Boolean function and r be a positive
integer smaller than n, then we have

nlr (f ) ≥
1
2

max
a∈Fn

2

nlr−1(Daf )

I In particular, for r = 2

nl2(f ) ≥
1
2

max
a∈Fn

2

nl(Daf ).



Proposition 3 and Corollary 2 (Carlet 2008)

I Let f be any n variable Boolean function and r be a
positive integer smaller than n, Then we have
nlr (f ) ≥ 2n−1 − 1

2

√
22n − 2

∑
a∈Fn

2
nlr−1(Daf ).

I Let f be any n variable function and r a positive integer
smaller than n. Assume that, for some nonnegative
integers M and m, we have nlr−1(Daf ) ≥ 2n−1 −M2m for
every nonzero a ∈ Fn

2. Then

nlr (f ) ≥ 2n−1 − 1
2

√
(2n − 1)M2m+1 + 2n

≈ 2n−1 −
√

M2
n+m−1

2

(1)



Quadratic Boolean functions

I Suppose g ∈ Bn is a quadratic function. The bilinear form
associated with g is defined by
B(x , y) = g(0) + g(x) + g(y) + g(x + y).

I The kernel of B(x , y) is the subspace of Fn
2 defined by

Eg = {x ∈ Fn
2 : B(x , y) = 0 for all y ∈ Fn

2}.



Quadratic Boolean functions

I Suppose g ∈ Bn is a quadratic function. The kernel of
B(x , y)

Eg = {a ∈ Fn
2 : Dag = constant }.

I A. Canteaut, P. Charpin and G. M. Kyureghyan, A new
class of monomial bent functions, Finite Fields and their
Applications 14 (2008) 221-241.



Walsh spectrum of quadratic Boolean functions

If g : Fn
2 → F2 is a quadratic boolean function and B(x , y) is the

quadratic form associated to it, then the Walsh Spectrum of g
depends only on the dimension, k , of the kernel, Eg , of B(x , y).
The weight distribution of the Walsh spectrum of g is:

Wg(µ) number of µ

0 2n − 2n−k

2(n+k)/2 2n−k−1 + (−1)f (0)2(n−k−2)/2

−2(n+k)/2 2n−k−1 − (−1)f (0)2(n−k−2)/2

I F. J. MacWilliams and N. J. A. Sloane, The theory of error
correcting codes, North-Holland, Amsterdam, 1977.



Lower bounds of second-order nonlinearities of cubic
Boolean functions

I If f is a cubic Boolean function the Daf is at most quadratic.
I It possible to get good estimates of the nonlinearities of

Daf for all a ∈ Fn
2 to obtain estimates of the lower bounds of

second-order nonlinearities of cubic Boolean functions.
I This technique is used in several recent papers for cubic

bent functions.



Lower bounds of second-order nonlinearities of cubic
Boolean functions

I If f (x , y)= Trp
1 (xy2i+1), where x , y ∈ F2p ,n = 2p,n ≥ 6 and

i is an integer such that 1 ≤ i < p, gcd(2p − 1,2i + 1) = 1
and gcd(i ,p) = e, then

nl2(f ) ≥ 2n−1−1
2

√
2( 3n

2 +e) − 2( 3n
4 + e

2 ) + 2n(2( n
4 + e

2 ) − 2e + 1).

I S. Gangopadhyay, S. Sarkar and R. Telang, On the lower
bounds of the second order nonlinearities of some Boolean
functions, Information Sciences 180 (2010) 266-273.



Lower bounds of second-order nonlinearities of cubic
Boolean functions

n = 2p 6 10 12
i 1,2 1,2,3,4 2,4

e = gcd(i ,p) 1 1 2
Lower bounds in (Gangopadhyay et al.) 15 378 1524
Hamming distances in (Fourquet et al.) 18 400 1760



Construction D0 type bent functions

I Let n = 2p, π is a permutation on Fp
2. f (x , y) = π(y) · x is a

Maiorana-McFarland type bent.
I Following is the D0 type bent constructed by Carlet:

h(x , y) = x · π(y) +

p∏
j=1

(xj + 1)

wherex = (x1, . . . , xn)

I C. Carlet, Two new classes of bent functions, in Proc.
EUROCRYPT ’93, LNCS vol. 765, Springer, 1994, pp.
77-101.



Walsh transforms of derivatives of D0 type bent
functions

Let h(x , y) = f (x , y) + g(x), where n = 2p, x , y ∈ Fp
2,

f (x , y) = x · π(y), g(x) =
∏p

i=1(xi + 1) and π is a permutation
on Fp

2 then
I The Walsh transform of D(a,b)h at (µ, η) ∈ Fp

2 × Fp
2 is

WD(a,b)h(µ, η) = WD(a,b)f (µ, η)− 2[(−1)µ·a + (−1)η·b]Wa·π(η)

I |WD(a,b)h(µ, η)| ≤ |WD(a,b)f (µ, η)|+ 4|Wa·π(η)|.



Proof outline

Let h(x , y) = f (x , y) + g(x), g(x) =
∏p

i=1(xi + 1) and
(a,b) ∈ Fp

2 × Fp
2, with a 6= 0. Then

g(x) + g(x + a) =

{
1, if (x , y) ∈ ({0} × Fp

2)
⋃

({a} × Fp
2),

0, otherwise .

The Walsh transform of D(a,b)h at (µ, η) ∈ Fp
2 × Fp

2 is

WD(a,b)h(µ, η) =
∑

(x ,y)∈Fp
2×Fp

2

(−1)f (x+a,y+b)+f (x ,y)+g(x+a)+g(x)+µ·x+η·y

=
∑

(x ,y)∈Fp
2×Fp

2

(−1)f (x+a,y+b)+f (x ,y)+µ·x+η·y

− 2
∑

(x ,y)∈{0,a}×Fp
2

(−1)f (x+a,y+b)+f (x ,y)+µ·x+η·y



Proof outline

= WD(a,b)f (µ, η)− 2[
∑
y∈Fp

2

(−1)f (0,y+b)+f (a,y)+µ·a+η·y

+
∑
y∈Fp

2

(−1)f (a,y+b)+f (0,y)+η·y ]

= WD(a,b)f (µ, η)− 2[(−1)µ·a
∑
y∈Fp

2

(−1)a·π(y)+η·y

+ (−1)η·b
∑
y∈Fp

2

(−1)a·π(y+b)+η·(y+b)]

= WD(a,b)f (µ, η)− 2[ (−1)µ·a + (−1)η·b ]Wa·π(η)

Thus, |WD(a,b)h(µ, η) |≤|WD(a,b)f (µ, η) | +4 |Wa·π(η) |



Main Theorem

Let h(x , y) = trp
1 (xy2i+1) +

∏p
i=1(xi + 1), where n = 2p,

x , y ∈ Fp
2, i is integer such that 1 ≤ i ≤ p,

gcd(2i + 1,2p − 1) = 1, and gcd(i ,p) = e, then

nl2(h) ≥ 22p−1 − 1
2

√
23p+e + 22p(1− 2e) + 5(2

5p+e
2 − 2

3p+e
2 ).



Proof outline

Let h(x , y) = trp
1 (xy2i+1) +

∏p
i=1(xi + 1), where n = 2p,

x , y ∈ Fp
2, i is integer such that 1 ≤ i ≤ p,

gcd(2i + 1,2p − 1) = 1, and gcd(i ,p) = e, then nonlinearity of
D(a,b)h is

nl(D(a,b)h) ≥


22p−1 − 2p+e−1, if a = 0 and b 6= 0,
22p−1 − 2p+e−1 − 2

p+e+2
2 , if a 6= 0 and b 6= 0,

22p−1 − 2
3p+e−2

2 − 2
p+e+2

2 , if a 6= 0 and b = 0.



Proof outline

I ∑
(a,b)∈F2p×F2p

nl(D(a,b)h)

≥ (2p − 1)(22p−1 − 2p+e−1) + (2p − 1)(22p−1 − 2
3p+e−2

2 − 2
p+e+2

2 )

+ (2p − 1)(2p − 1)(22p−1 − 2p+e−1 − 2
p+e+2

2 )

= 24p−1 − 23p+e−1 − 22p−1(1− 2e)− 5(2
5p+e−2

2 − 2
3p+e−2

2 )

I

nl2(h) ≥ 2n−1 − 1
2

√
22n − 2

∑
(a,b)∈Fp

2×Fp
2

nl(D(a,b)h).



Comparisons

n = 2p 6 10 12
i 1,2 1,2,3,4 2,4

e = gcd(i ,p) 1 1 2
Lower bounds in (Gangopadhyay et al.) 15 378 1524
Hamming distances in (Fourquet et al.) 18 400 1760
Lower bounds of D0 type considered 10 351 1466



Another class of functions

I Let h(x , y) = trp
1 (x(y2m+1+1 + y3 + y)) +

∏p
i=1(xi + 1),

where n = 2p, x , y ∈ Fp
2, m is integer such that

p = 2m + 1, then

nl2(h) ≥ 22p−1 − 1
2

√
23p+2 − 3 · 22p + 5 · (2

5p+3
2 − 2

3p+3
2 ).

I S. Sarkar and S. Gangopadhyay, On the Second Order
Nonlinearity of a Cubic Maiorana-McFarland Bent
Function, Finite Fields and their Applications, Fq 9, Dublin,
Ireland, July 13-17, 2009.



Conclusions

I We identify a class of bent functions, with maximum
algebraic degree, having good second order nonlinearity.

I Finding out bounds of the nonlinearity profile of these
functions is an open question.
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