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Boolean functions
» A Boolean function f on n variables is a mapping :

f:10,11" — {0,1}.

» Boolean function can be represented by a truth table.
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» Also represented by the 2"-length string
[£(0),f(1),...,f(2" — 1)]
» The number of all n-variable Boolean functions is 22".



Boolean functions

» Let IF, be the prime field of characteristic 2.
» A Boolean function f is a function from 7 to F».

» Alternatively Boolean functions can be thought of as
functions from Fan to Fo.

» Let B, be the set of all Boolean functions on n variables.



Algebraic Normal Form (ANF)

» The algebraic normal form (ANF) of f € B, is

n
f(Xq, X, ..., Xn) = > Lia (H xf’”) 7
a=(ay,...,an)€Fy i=1

where i € Fo.

» The algebraic degree of f,
deg(f) := max{wt(a) : ua # 0,a € F}.



Nonlinearity

» dist : B, x B, — Z defined by
dist(f,g) = [{x € FJ : f(x) # g(x)}|, for all f, g € By, is said
to be the Hamming distance between f and g.

» Nonlinearity of f € B, is defined as
nl(f) = min,c 4, {dist(f,l)} where A, is the set of affine
functions on n variables.

» Alternatively the nonlinearity of f is its distance from
RM(1, n), the Reed-Muller code of order 1 and size 2".



Nonlinearity and Walsh Transformation

» The Walsh transform f € B, at A € FJ is defined as follows:

Wi(3) = 3 (~1) 00,

X€F]

1
5 max [Wy(\).
€ on

nl(f) =21 —

It is to be noted that the Walsh spectrum of f € B, can be
computed in time O(n2") and hence the nonlinearity.



Upper bound of nonlinearity

» Parseval’s identity

> W2 =2

)\E]FZn

> |W;()\)| > 272, which implies ni(f) < 27



Bent functions: functions with maximum nonlinearity

» A Boolean function f € B, where nis even is said to be
bent if and only if |W;()\)| = 27/2 for all A € F3.

» From this it follows that bent functions have maximum
nonlinearity namely 2"—' — 2z~ for even n.



Nonlinearity to nonlinearity profile

» Suppose f is a Boolean function on n variables. For every
non-negative integer r < n, we denote by nl.(f) the
rth-order nonlinearity of f, which is the minimum Hamming
distance of f and all functions of algebraic degree at most
r.

» Alternatively the rth-order nonlinearity of an n variable
Boolean function f is its distance from RM(r, n), the r order
Reed-Muller code of size 2".

» The sequence of values nl.(f), for r ranging from 1 to
n— 1, is said to be the nonlinearity profile of f.

» Unlike the first-order nonlinearity there is no fast algorithm
to determine second or higher-order nonlinearities.



Lower bounds on nonlinearity profile

» (Carlet 2008) C. Carlet, Recursive lower bounds on the
nonlinearity profile of Boolean functions and their
applications, IEEE Trans. Inform. Theory 54 (3) (2008)
1262-1272.

» (Fouquet and Tavernier 2008) R. Fourquet and C.
Tavernier, An improved list decoding algorithm for the
second order Reed-Muller codes and its applications, Des.
Codes Cryptotogr. 49 (2008) 323-340.



Derivatives of Boolean function

» The derivative of f € B, with respect to a € IF] is defined by
Daf(x) := f(x) + f(x + a)

» The rth-order derivative of f with respect to V is defined by
Dyf(x) := Da, ... Da f(x)

Where V be an r-dimensional subspace of ] generated
by ay,...,ar.



Proposition 2 (Carlet 2008)

» Let f be nvariable Boolean function and r be a positive
integer smaller than n, then we have

nly(f) > 1 max nly_1(D4f)
2 acFy

» In particular, for r =2

nk(f) > %max nl(Daf).

acFy



Proposition 3 and Corollary 2 (Carlet 2008)

» Let f be any n variable Boolean function and r be a
positive integer smaller than n, Then we have

nly(f) > 2n-1 — %\/22n — 2 aciy Mh—1(Daf).

» Let f be any nvariable function and r a positive integer
smaller than n. Assume that, for some nonnegative
integers M and m, we have nl,_1(D,f) > 2"~1 — M2™ for
every nonzero a € FJ. Then

1
n—-1_ % _ 1
nl(f) > 2 2\/(2n 1)M2m+1 4 2n
~ 2 M

(1)



Quadratic Boolean functions

» Suppose g € B is a quadratic function. The bilinear form
associated with g is defined by

B(x,y) = g(0) + g(x) + g(y) + g(x + y).
» The kernel of B(x, y) is the subspace of '] defined by

Eg={xeF3:B(x,y)=0forall y € F3}.



Quadratic Boolean functions

» Suppose g € By, is a quadratic function. The kernel of

B(x,y)
&g ={acF3: Dag= constant }.

» A. Canteaut, P. Charpin and G. M. Kyureghyan, A new
class of monomial bent functions, Finite Fields and their
Applications 14 (2008) 221-241.



Walsh spectrum of quadratic Boolean functions

If g : FJ — FF» is a quadratic boolean function and B(x, y) is the
quadratic form associated to it, then the Walsh Spectrum of g
depends only on the dimension, k, of the kernel, &g, of B(x, y).
The weight distribution of the Walsh spectrum of g is:

Wy(1) number of

0 on _ 2n—k
o(n+k)/2 on—k—1 + (71 )f(0)2(n—k—2)/2
_o(n+k)/2  on—k—1 _ (_1 )f(0)2(nfk72)/2

» F. J. MacWilliams and N. J. A. Sloane, The theory of error
correcting codes, North-Holland, Amsterdam, 1977.



Lower bounds of second-order nonlinearities of cubic
Boolean functions

» If fis a cubic Boolean function the D,f is at most quadratic.

» It possible to get good estimates of the nonlinearities of
Daf for all a € 3 to obtain estimates of the lower bounds of
second-order nonlinearities of cubic Boolean functions.

» This technique is used in several recent papers for cubic
bent functions.



Lower bounds of second-order nonlinearities of cubic
Boolean functions

> I f(x,y)= Tr(xy?*"), where X,y € Fa,n=2p,n > 6 and
iis aninteger such that1 <i< p,gcd(2P —1,2" +1) =1
and gcd(/, p) = e, then

3n

nh(f) > 2" _%\/2<32—”+e> 2039 4 on(2(5+9) _ e 4 1),

» S. Gangopadhyay, S. Sarkar and R. Telang, On the lower
bounds of the second order nonlinearities of some Boolean
functions, Information Sciences 180 (2010) 266-273.



Lower bounds of second-order nonlinearities of cubic
Boolean functions

n=2p 6 10 12

i 1,21,2,3,4 | 2,4

e =gcd(i,p) 1 1 2

Lower bounds in (Gangopadhyay et al.) | 15 378 1524

Hamming distances in (Fourquet etal.) | 18 400 1760




Construction Dy type bent functions

» Let n=2p, 7 is a permutation on Fg. f(x,y)=m(y) -xisa
Maiorana-McFarland type bent.

» Following is the Dy type bent constructed by Carlet:

p
h(x,y)=x-n(y +H
j=1

wherex = (xq,...,Xn)

» C. Carlet, Two new classes of bent functions, in Proc.
EUROCRYPT '93, LNCS vol. 765, Springer, 1994, pp.
77-101.



Walsh transforms of derivatives of Dy type bent
functions

Let h(x,y) = f(x,y) + g(x), where n = 2p, x,y € F5,
f(x,y) = x-7m(y), 9(x) = [17_(x; + 1) and = is a permutation
on F§ then

» The Walsh transform of Dz p)h at (11, n) € F§ x Fj is

W, oyh(1s1) = W, (1, m) — 2[(—1)"% + (1 )"E] War (1)



Proof outline

Let h(x,y) = f(x,y) + g(x), g(x) = TT}_4(x; + 1) and
(a,b) € F§ x F§, with a # 0. Then

- p p
o)+t a={ & Bben (01 FDUE 7D

The Walsh transform of D, 5 h at (1, n) € F5 x F is

Wp g pyh1t:m) = Z (—1)fxtay D)+ (X )+a(x+a)+g(x) +uxtny
(x,y)EF5 xIF5
= 3 (1) rarED ) ey
(x.y)EFLxF5
2 S (o)A ey

(x.y)€{0,a} xFh



Proof outline

= Wp, () — 20 Y (—1)/ @y @y pasny
yers
+ Z (—1)f@y+b)+1Oy)+n]
yeFry
= WD(a,b)f(#, n) — 2[(—1)"2 Z (—1 )a~7r(y)+77~y
yeFy

170 " (—1 yam(y+b)tn(y+b)]
yeFrs
= Wp, (1) = 2[ (=) 2 + (—1)"° | War(n)

Thus, | Wp, , (i, n) [<| Wp, (1, m) | +4 | Waxr(n) |



Main Theorem

Let h(x,y) = tr’(xy?*+") + TI°_, (X + 1), where n = 2p,
X,y € F5, iis integer such that 1 </ < p,
ged(2'+1,2° — 1) = 1, and ged(/, p) = e, then

5p+e 3p+e

n(h) > 22P=1 %\/23p+e +22p(1 —28) 5272 —272).



Proof outline

Let h(x,y) = tr{(xy?*") + [T"_,(x; + 1), where n = 2p,

X,y € IE“Z’, iisinteger such that 1 </ < p,

ged(2'+1,2° — 1) = 1, and ged(/, p) = e, then nonlinearity of
D(a,b)h is

22p—1 _ ppte-1 ifa=0and b #0,
ni(Dapyh) > { 221 — opte-t 2"*5*2, ifa£0and b0,
o2p—1 _ p¥7=* , ifa#0andb=0.



Proof outline

>
S>> nl(Danh)
(a,b)€Fyp xFyp
> (2P — 1)(22P—1 — 2pte=1y | (2P _ {)(22p—1 _ pite=2 2p+Te+2)
4 (2P — 1)(2P — 1)(22p1 _ ppre=1 _ P
— 241 _ %pte-1 2011 _pe) _ 5(2W B 2%)
>

nk(h) = 277 - ;\/ 22n—2 % nl(Deag)h).
(a,b

P P
)EF, xFy



Comparisons

n=2p 6 10 12

i 1,2[1,2,3,4| 2,4

e = gcd(i, p) 1 1 2

Lower bounds in (Gangopadhyay et al.) | 15 378 1524

Hamming distances in (Fourquet etal.) | 18 400 1760

Lower bounds of Dy type considered 10 351 1466




Another class of functions

> Let h(x,y) = trP(x(y2" "1 + y® + y)) + [T, (% + 1),
where n = 2p, x,y € F5, mis integer such that
p=2m+1,then

5p+3 3p+3
2

nh(h) > 22P~1 %\/23p+2 ~3-22p45.(22 —272).

» S. Sarkar and S. Gangopadhyay, On the Second Order
Nonlinearity of a Cubic Maiorana-McFarland Bent
Function, Finite Fields and their Applications, Fq 9, Dublin,
Ireland, July 13-17, 2009.



Conclusions

» We identify a class of bent functions, with maximum
algebraic degree, having good second order nonlinearity.

» Finding out bounds of the nonlinearity profile of these
functions is an open question.
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